87 research outputs found

    Differential interactions between identity and emotional expression in own and other-race faces: effects of familiarity revealed through redundancy gains.

    Get PDF
    We examined relations between the processing of facial identity and emotion in own- and other-race faces, using a fully crossed design with participants from 3 different ethnicities. The benefits of redundant identity and emotion signals were evaluated and formally tested in relation to models of independent and coactive feature processing and measures of processing capacity for the different types of stimuli. There was evidence for coactive processing of identity and emotion that was linked to super capacity for own-race but not for other-race faces. In addition, the size of the redundancy gain for other-race faces varied with the amount of social contact participants had with individuals from the other race. The data demonstrate qualitative differences in the processing of facial identity and emotion cues in own and other races. The results also demonstrate that the level of integration of identity and emotion cues in faces may be determined by life experience and exposure to individuals of different ethnicities

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    The prognosis of allocentric and egocentric neglect : evidence from clinical scans

    Get PDF
    We contrasted the neuroanatomical substrates of sub-acute and chronic visuospatial deficits associated with different aspects of unilateral neglect using computed tomography scans acquired as part of routine clinical diagnosis. Voxel-wise statistical analyses were conducted on a group of 160 stroke patients scanned at a sub-acute stage. Lesion-deficit relationships were assessed across the whole brain, separately for grey and white matter. We assessed lesions that were associated with behavioural performance (i) at a sub-acute stage (within 3 months of the stroke) and (ii) at a chronic stage (after 9 months post stroke). Allocentric and egocentric neglect symptoms at the sub-acute stage were associated with lesions to dissociated regions within the frontal lobe, amongst other regions. However the frontal lesions were not associated with neglect at the chronic stage. On the other hand, lesions in the angular gyrus were associated with persistent allocentric neglect. In contrast, lesions within the superior temporal gyrus extending into the supramarginal gyrus, as well as lesions within the basal ganglia and insula, were associated with persistent egocentric neglect. Damage within the temporo-parietal junction was associated with both types of neglect at the sub-acute stage and 9 months later. Furthermore, white matter disconnections resulting from damage along the superior longitudinal fasciculus were associated with both types of neglect and critically related to both sub-acute and chronic deficits. Finally, there was a significant difference in the lesion volume between patients who recovered from neglect and patients with chronic deficits. The findings presented provide evidence that (i) the lesion location and lesion size can be used to successfully predict the outcome of neglect based on clinical CT scans, (ii) lesion location alone can serve as a critical predictor for persistent neglect symptoms, (iii) wide spread lesions are associated with neglect symptoms at the sub-acute stage but only some of these are critical for predicting whether neglect will become a chronic disorder and (iv) the severity of behavioural symptoms can be a useful predictor of recovery in the absence of neuroimaging findings on clinical scans. We discuss the implications for understanding the symptoms of the neglect syndrome, the recovery of function and the use of clinical scans to predict outcome

    The Golden Beauty: Brain Response to Classical and Renaissance Sculptures

    Get PDF
    Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naΓ―ve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naΓ―ve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty)

    Re-imagining the future:repetition decreases hippocampal involvement in future simulation

    Get PDF
    Imagining or simulating future events has been shown to activate the anterior right hippocampus (RHC) more than remembering past events does. One fundamental difference between simulation and memory is that imagining future scenarios requires a more extensive constructive process than remembering past experiences does. Indeed, studies in which this constructive element is reduced or eliminated by β€œpre-imagining” events in a prior session do not report differential RHC activity during simulation. In this fMRI study, we examined the effects of repeatedly simulating an event on neural activity. During scanning, participants imagined 60 future events; each event was simulated three times. Activation in the RHC showed a significant linear decrease across repetitions, as did other neural regions typically associated with simulation. Importantly, such decreases in activation could not be explained by non-specific linear time-dependent effects, with no reductions in activity evident for the control task across similar time intervals. Moreover, the anterior RHC exhibited significant functional connectivity with the whole-brain network during the first, but not second and third simulations of future events. There was also evidence of a linear increase in activity across repetitions in right ventral precuneus, right posterior cingulate and left anterior prefrontal cortex, which may reflect source recognition and retrieval of internally generated contextual details. Overall, our findings demonstrate that repeatedly imagining future events has a decremental effect on activation of the hippocampus and many other regions engaged by the initial construction of the simulation, possibly reflecting the decreasing novelty of simulations across repetitions, and therefore is an important consideration in the design of future studies examining simulation

    Face Inversion Reduces the Persistence of Global Form and Its Neural Correlates

    Get PDF
    Face inversion produces a detrimental effect on face recognition. The extent to which the inversion of faces and other kinds of objects influences the perceptual binding of visual information into global forms is not known. We used a behavioral method and functional MRI (fMRI) to measure the effect of face inversion on visual persistence, a type of perceptual memory that reflects sustained awareness of global form. We found that upright faces persisted longer than inverted versions of the same images; we observed a similar effect of inversion on the persistence of animal stimuli. This effect of inversion on persistence was evident in sustained fMRI activity throughout the ventral visual hierarchy, including the lateral occipital area (LO), two face-selective visual areasβ€”the fusiform face area (FFA) and the occipital face area (OFA)β€”and several early visual areas. V1 showed the same initial fMRI activation to upright and inverted forms but this activation lasted longer for upright stimuli. The inversion effect on persistence-related fMRI activity in V1 and other retinotopic visual areas demonstrates that higher-tier visual areas influence early visual processing via feedback. This feedback effect on figure-ground processing is sensitive to the orientation of the figure

    Applied screening tests for the detection of superior face recognition.

    Get PDF
    In recent years there has been growing interest in the identification of people with superior face recognition skills, for both theoretical and applied investigations. These individuals have mostly been identified via their performance on a single attempt at a tightly controlled test of face memory-the long form of the Cambridge Face Memory Test (CFMT+). The consistency of their skills over a range of tests, particularly those replicating more applied policing scenarios, has yet to be examined systematically. The current investigation screened 200 people who believed they have superior face recognition skills, using the CFMT+ and three new, more applied tests (measuring face memory, face matching and composite-face identification in a crowd). Of the sample, 59.5% showed at least some consistency in superior face recognition performance, although only five individuals outperformed controls on overall indices of target-present and target-absent trials. Only one participant outperformed controls on the Crowds test, suggesting that some applied face recognition tasks require very specific skills. In conclusion, future screening protocols need to be suitably thorough to test for consistency in performance, and to allow different types of superior performer to be detected from the outset. Screening for optimal performers may sometimes need to directly replicate the task in question, taking into account target-present and target-absent performance. Self-selection alone is not a reliable means of identifying those at the top end of the face recognition spectrum

    Common cortical responses evoked by appearance, disappearance and change of the human face

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To segregate luminance-related, face-related and non-specific components involved in spatio-temporal dynamics of cortical activations to a face stimulus, we recorded cortical responses to face appearance (Onset), disappearance (Offset), and change (Change) using magnetoencephalography.</p> <p>Results</p> <p>Activity in and around the primary visual cortex (V1/V2) showed luminance-dependent behavior. Any of the three events evoked activity in the middle occipital gyrus (MOG) at 150 ms and temporo-parietal junction (TPJ) at 250 ms after the onset of each event. Onset and Change activated the fusiform gyrus (FG), while Offset did not. This FG activation showed a triphasic waveform, consistent with results of intracranial recordings in humans.</p> <p>Conclusion</p> <p>Analysis employed in this study successfully segregated four different elements involved in the spatio-temporal dynamics of cortical activations in response to a face stimulus. The results show the responses of MOG and TPJ to be associated with non-specific processes, such as the detection of abrupt changes or exogenous attention. Activity in FG corresponds to a face-specific response recorded by intracranial studies, and that in V1/V2 is related to a change in luminance.</p
    • …
    corecore