6 research outputs found

    Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors

    No full text
    Receptor tyrosine kinases (RTKs) such as the insulin-like growth factor type 1 receptor (IGF-1R) control important biological activities as well as being involved in pathological processes. Due to their supportive nature in many human cancers they have long been considered attractive therapeutic targets. However, lessons learnt from early targeting trials highlight that a simple “active versus inactive” state model with classical kinase-only signaling is overly simplistic and does not describe reality. A vast amount of evidence exists disproving this model and hence provides a rational explanation for failure of many targeting agents designed under such a paradigm. In addition, substantial evidence exists that the IGF-1R and other RTKs make direct use of the G protein-coupled receptor (GPCR) components G proteins, GRKs, and β-arrestins, outside of their traditional receptor family frame. In this chapter we review the evidence that RTKs can undertake a wide range of active conformations, capable of distinct downstream signal cascades and propose an RTK/GPCR functional hybrid model, while discussing the implications of such an update on therapeutic drug development pipelines

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore