2,032 research outputs found

    Capturing flight system test engineering expertise: Lessons learned

    Get PDF
    Within a few years, JPL will be challenged by the most active mission set in history. Concurrently, flight systems are increasingly more complex. Presently, the knowledge to conduct integration and test of spacecraft and large instruments is held by a few key people, each with many years of experience. JPL is in danger of losing a significant amount of this critical expertise, through retirement, during a period when demand for this expertise is rapidly increasing. The most critical issue at hand is to collect and retain this expertise and develop tools that would ensure the ability to successfully perform the integration and test of future spacecraft and large instruments. The proposed solution was to capture and codity a subset of existing knowledge, and to utilize this captured expertise in knowledge-based systems. First year results and activities planned for the second year of this on-going effort are described. Topics discussed include lessons learned in knowledge acquisition and elicitation techniques, life-cycle paradigms, and rapid prototyping of a knowledge-based advisor (Spacecraft Test Assistant) and a hypermedia browser (Test Engineering Browser). The prototype Spacecraft Test Assistant supports a subset of integration and test activities for flight systems. Browser is a hypermedia tool that allows users easy perusal of spacecraft test topics. A knowledge acquisition tool called ConceptFinder which was developed to search through large volumes of data for related concepts is also described and is modified to semi-automate the process of creating hypertext links

    Quantum Generative Adversarial Networks for Learning and Loading Random Distributions

    Full text link
    Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods require O(2n)\mathcal{O}\left(2^n\right) gates to load an exact representation of a generic data structure into an nn-qubit state. This scaling can easily predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage. Our work presents a hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions -- implicitly given by data samples -- into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it into a quantum state. The loading requires O(poly(n))\mathcal{O}\left(poly\left(n\right)\right) gates and can, thus, enable the use of potentially advantageous quantum algorithms, such as Quantum Amplitude Estimation. We implement the qGAN distribution learning and loading method with Qiskit and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.Comment: 14 pages, 13 figure

    Unlocking the Potential of Flexible Energy Resources to Help Balance the Power Grid

    Full text link
    Flexible energy resources can help balance the power grid by providing different types of ancillary services. However, the balancing potential of most types of resources is restricted by physical constraints such as the size of their energy buffer, limits on power-ramp rates, or control delays. Using the example of Secondary Frequency Regulation, this paper shows how the flexibility of various resources can be exploited more efficiently by considering multiple resources with complementary physical properties and controlling them in a coordinated way. To this end, optimal adjustable control policies are computed based on robust optimization. Our problem formulation takes into account power ramp-rate constraints explicitly, and accurately models the different timescales and lead times of the energy and reserve markets. Simulations demonstrate that aggregations of select resources can offer significantly more regulation capacity than the resources could provide individually.Comment: arXiv admin note: text overlap with arXiv:1804.0389

    Earth Radiation budget satellite system studies

    Get PDF
    The scientific objectives and the associated mission analysis, instrument definition, and data analysis methods are discussed

    Estimating Drift Parameters in a Fractional Ornstein Uhlenbeck Process with Periodic Mean

    Get PDF
    We construct a least squares estimator for the drift parameters of a fractional Ornstein Uhlenbeck process with periodic mean function and long range dependence. For this estimator we prove consistency and asymptotic normality. In contrast to the classical fractional Ornstein Uhlenbeck process without periodic mean function the rate of convergence is slower depending on the Hurst parameter HH, namely n1−Hn^{1-H}
    • …
    corecore