31 research outputs found

    Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA.

    Get PDF
    Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex

    Engineering GPCR signaling pathways with RASSLs

    Get PDF
    We are creating families of designer G-protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (Gs, Gi, Gq). These new advances are reviewed here to help facilitate the use of these powerful and diverse tools

    Developing common protocols to measure tundra herbivory across spatial scales

    Get PDF
    Understanding and predicting large-scale ecological responses to global environmental change requires comparative studies across geographic scales with coordinated efforts and standardized methodologies. We designed, applied, and assessed standardized protocols to measure tundra herbivory at three spatial scales: plot, site (habitat), and study area (landscape). The plot- and site-level protocols were tested in the field during summers 2014–2015 at 11 sites, nine of them consisting of warming experimental plots included in the International Tundra Experiment (ITEX). The study area protocols were assessed during 2014–2018 at 24 study areas across the Arctic. Our protocols provide comparable and easy to implement methods for assessing the intensity of invertebrate herbivory within ITEX plots and for characterizing vertebrate herbivore communities at larger spatial scales. We discuss methodological constraints and make recommendations for how these protocols can be used and how sampling effort can be optimized to obtain comparable estimates of herbivory, both at ITEX sites and at large landscape scales. The application of these protocols across the tundra biome will allow characterizing and comparing herbivore communities across tundra sites and at ecologically relevant spatial scales, providing an important step towards a better understanding of tundra ecosystem responses to large-scale environmental change

    Valuing nature’s contributions to people: the IPBES approach

    Get PDF
    Nature is perceived and valued in starkly different and often conflicting ways. This paper presents the rationale for the inclusive valuation of nature’s contributions to people (NCP) in decision making, as well as broad methodological steps for doing so. While developed within the context of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), this approach is more widely applicable to initiatives at the knowledge–policy interface, which require a pluralistic approach to recognizing the diversity of values. We argue that transformative practices aiming at sustainable futures would benefit from embracing such diversity, which require recognizing and addressing power relationships across stakeholder groups that hold different values on human nature-relations and NCP

    Developing common protocols to measure tundra herbivory across spatial scales

    Get PDF
    Understanding and predicting large-scale ecological responses to global environmental change requires comparative studies across geographic scales with coordinated efforts and standardized methodologies. We designed, applied and assessed standardized protocols to measure tundra herbivory at three spatial scales: plot, site (habitat), and study area (landscape). The plot and site-level protocols were tested in the field during summers 2014-2015 at eleven sites, nine of them comprising warming experimental plots included in the International Tundra Experiment (ITEX). The study area protocols were assessed during 2014-2018 at 24 study areas across the Arctic. Our protocols provide comparable and easy-to-implement methods for assessing the intensity of invertebrate herbivory within ITEX plots and for characterizing vertebrate herbivore communities at larger spatial scales. We discuss methodological constraints and make recommendations for how these protocols can be used and how sampling effort can be optimized to obtain comparable estimates of herbivory, both at ITEX sites and at large landscape scales. The application of these protocols across the tundra biome will allow characterizing and comparing herbivore communities across tundra sites and at ecologically relevant spatial scales, providing an important step towards a better understanding of tundra ecosystem responses to large-scale environmental change.CGB was funded by the Estonian Research Council (grant IUT 20-28), and the European Regional Development Fund (Centre of Excellence EcolChange). JDMS was supported by the Research Council of Norway (262064). OG and LB were supported by the French Polar Institute (program “1036 Interactions”) and PRC CNRS Russie 396 (program “ICCVAT”). DSH, NL, MAG, JB and JDR were supported by the Natural Sciences and Engineering Research Council (Canada). NL, MAG, JB and JDR were supported by the Polar Continental Shelf Program. NL was supported by the Canada Research Chair program and the Canada Foundation for Innovation. NL and JB were supported by Environment Canada and Polar Knowledge Canada. NL and MAG were supported by the Government of Nunavut, the Igloolik Community, and Université de Moncton. NL, MAG and JB were supported by the Northern Scientific Training Program. JMA was funded by Carl Tryggers stiftelse för vetenskaplig forskning and Qatar Petroleum (QUEX-CAS-QP-RD-18_19). IHM-S was funded by the UK Natural Environmental Research Council Shrub Tundra (NE/M016323/1) grant. ISJ was funded by the University of Iceland Research Fund. Fieldwork in Yamal peninsula (Erkuta, Sabetta and Belyi) for DE, NS and AS was supported by the Russian Foundation for Basic Research (No: 18-05-60261 and No: 18-54-15013), Fram Centre project YaES (No: 362259), the Russian Center of Development of the Arctic, and the “Yamal-LNG” company. Fieldwork in Utqiaġvik was supported by the U.S. Fish and Wildlife Service. Fieldwork in Svalbard was supported by the Norwegian Research Council (AFG No: 246080/E10), the Norwegian Polar Institute, Climate-ecological Observatory for Arctic Tundra – COAT, the Svalbard Environmental protection fund (project number 15/20), and the University Centre in Svalbard (UNIS) and the AB-338/AB-838 students of 2018. Sampling at Billefjorden was supported by GACR 17- 20839S

    Native corn and potato starch as CO2 gas bubble nucleation agent for low-temperature high-pressure foaming applications

    No full text
    Gas bubble nucleation and its control is one of the most important parameters in industrial foaming applications defining the physical and chemical properties of the end product. It is possible to enhance this process by adding gas bubble nucleation supporting agents. In this work, the potency of native corn and potato starch as bubble nucleating agents for low-temperature high pressure (HP) foaming applications have been evaluated at 30 barg. In a first work step, the physical properties of the starches were assessed using scanning electron microscopy (SEM), Washburn rise method, nitrogen adsorption, Hg porosimetry as well as light scattering and compared to those of talcum, a well know and widely used nucleating agent in non-food systems. Secondly, the effect of the addition of these starch particles on CO gas bubble nucleation in highly viscous watery hydroxy-methyl-propyl-cellulose dispersions was determined applying HP rheology. Results of the surface properties evaluation suggested that the investigated native starch particles are suitable natural nucleating agents for HP foaming applications but are less efficient than talcum particles. The critical supersaturation value of a 1 wt% HPMC dispersion was reduced from to and after the addition of 1 wt% corn and potato starch particles, respectively. The applied HP rheology technique developed to measure the critical supersaturation revealed, that the starches can compete with the talcum. These findings also allowed to validate the suitability of HP rheology to investigate gas bubble nucleation under defined shear conditions thus, enabling new insights into the mechanism of this process for low-temperature foaming applications in food and pharmaceutical product systems

    Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults.

    No full text
    Gut microbiota richness and stability are important parameters in host-microbe symbiosis. Diet modification, notably using dietary fibres, might be a way to restore a high richness and stability in the gut microbiota. In this work, during a 6-week nutritional trial, 19 healthy adults consumed a basal diet supplemented with 10 or 40 g dietary fibre per day for 5 days, followed by 15-day washout periods. Fecal samples were analysed by a combination of 16S rRNA gene pyrosequencing, intestinal cell genotoxicity assay, metatranscriptomics sequencing approach and short-chain fatty analysis. This short-term change in the dietary fibre level did not have the same impact for all individuals but remained significant within each individual gut microbiota at genus level. Higher microbiota richness was associated with higher microbiota stability upon increased dietary fibre intake. Increasing fibre modulated the expression of numerous microbiota metabolic pathways such as glycan metabolism, with genes encoding carbohydrate-active enzymes active on fibre or host glycans. High microbial richness was also associated with high proportions of Prevotella and Coprococcus species and high levels of caproate and valerate. This study provides new insights on the role of gut microbial richness in healthy adults upon dietary changes and host microbes' interaction

    Stabilization but No Functional Influence of HIF-1α Expression in the Intestinal Epithelium during Salmonella Typhimurium Infection

    No full text
    Hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we inferred significant activation of HIF-1 after oral infection of mice with Salmonella enterica serovar Typhimurium. Immunohistochemistry and Western blot analyses confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a-deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced noncanonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact inflammatory gene expression, bacterial spread, or disease outcomes. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro, HIF-1α-deficient macrophages showed overall impaired transcription of mRNA encoding proinflammatory factors; however, the intracellular survival of Salmonella was not impacted by HIF-1α deficiency
    corecore