84 research outputs found

    Applying a model of orographic precipitation to improve mass balance modeling of the Juneau Icefield

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016Mass loss from glaciers in Southeast Alaska is expected to alter downstream environmental conditions such as streamflow patterns, riverine and coastal ecological systems, and ocean properties. To investigate these potential changes under future climate scenarios, accurate climate data are needed to drive glacier mass balance models. However, assessing and modeling precipitation in mountainous regions remains a major challenge in glacier mass balance modeling. We have used a linear theory of orographic precipitation model (LT model) to downscale precipitation from both the Weather Research and Forecasting (WRF) model and the European Centre for Medium-RangeWeather Forecasts interim reanalysis (ERA-Interim) to the Juneau Icefield, one of the largest icefields in North America (4149 km2), over the period 1979--2013. The LT model is physically-based, combining airflow dynamics and simple cloud microphysics to simulate precipitation in complex terrain. Cloud microphysics is parameterized as a function of user-defined snow and rain fall speeds which are then used to calculate the cloud time delay, t, at every time step. We established a model reference run using literature values of snow fall speed and rain fall speed. The model was run using a 1 km digital elevation model and 6 hour timesteps. Due to a lack of precipitation observations, we validated the model with point net accumulation observations along an 8.5 km transect on Taku glacier, one of the largest and best-studied outlet glaciers of the icefield. The observations occurred in late July of 1998, 2004, 2005, 2010, and 2011. We extracted the snow portion from the modeled precipitation and accounted for melt using a temperature-index model prior to comparing results to the observations. The latter was necessary since the observations were taken when substantial melt of the winter snow cover had occurred. The results of the reference run show reasonable agreement with the available glaciological observations (r2 = 0.89). We assessed the LT model results in terms of the icefield-wide average winter (October-March) precipitation amount and its spatial pattern for the 1979-2013 time period. To express the latter we calculated a precipitation index map where each grid cell of average winter precipitation was divided by the icefield-wide spatial mean. The downscaled precipitation pattern produced by the LT model is consistent with the expected orographic precipitation pattern with substantially reduced precipitation on the eastern lee-side portion of the icefield, a pattern that is absent in the coarse resolution WRF and ERA-Interim precipitation fields. To investigate the robustness of the LT model results, we performed a series of sensitivity experiments varying the LT model parameters of snow fall speed and rain fall speed, as well as the horizontal resolution of the underlying grid, and the climate input data. The precipitation pattern produced by the LT model was stable regardless of the parameter combination, horizontal resolution, and climate input data, but the precipitation amount varied strongly with these factors. For the range of snow fall speeds tested and holding all other parameters constant, the average winter precipitation spatial mean varied from 2.5 m to 4.4 m. We were unable to constrain the precipitation amount due to the scarcity of validation data. However, given the stability of the winter precipitation pattern produced by the LT model, we suggest a winter precipitation index map calculated from the LT model reference run results be used in combination with a distributed mass balance model for future mass balance modeling studies of the Juneau Icefield. More observations of total precipitation are needed to further validate the precipitation pattern of the LT model results, constrain the model parameters, and improve the estimation of total precipitation amounts by the LT model. We suggest three locations for potential weather stations that would be most beneficial for validating LT model results. The LT model could be applied to other regions in Alaska and elsewhere with strong orographic effects for improved glacier mass balance modeling and/or hydrological modeling

    Estimating Future Flood Frequency and Magnitude in Basins Affected by Glacier Wastage

    Get PDF
    INE/AUTC 15.0

    The Impact of Having a 15-min Break With and Without Consuming an Energy Drink on Prolonged Simulated Highway Driving

    Get PDF
    Purpose: To examine whether consuming an energy drink while having a break is effective in reducing the number of lapses of attention during prolonged highway driving. Methods: In a double-blind crossover study, N = 21 healthy volunteers performed a 4-h driving test in the STISIM driving simulator. After 2 h, a 15-min break was scheduled. During the break, participants consumed either 250 ml of energy drink (ED) (Red Bull) or a placebo drink (Red Bull without caffeine (80 mg), glucuronolactone, taurine and B-vitamins). Participants were instructed to drive 95 km/h with a steady lateral position. Primary outcome was the number (#) of lapses; i.e., short periods of inattention defined by a deviation from the chosen lateral position for > 100 cm for 8 s or more. Results: Having a break, without consuming energy drink, significantly reduced the number of lapses in the 3rd hour of driving (9.9 versus 7.4 lapses, p = 0.006). After placebo, the number of lapses in the 4th and 2nd hour were identical (9.9 and 9.9 lapses, p = 1.000). Consuming and energy drink during the break resulted in a significant reduction in lapses in the 3rd hour (4.3 versus 9.2, p = 0.012) and 4th hour of driving (6.2 versus 9.2 lapses, p = 0.041), when compared with the 2nd hour of driving. Conclusion: Consuming an energy drink while having a 15-min break significantly reduces the number of lapses during prolonged highway driving, and to a greater extent than having a break only

    The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues

    Get PDF
    Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.This work was supported by grants from the Norwegian Cancer Society (to ØH), Junta de Andalucía, grant CVI-02483 (to JMSR), The Research Council of Norway (grant 185181 to A.M.), the Western Norway Health Authorities (grant 911618 to A.M.) and The Kristian Gerhard Jebsen Foundation (to AM)

    The association between adult attained height and sitting height with mortality in the European prospective investigation into cancer and nutrition (EPIC)

    Get PDF
    Adult height and sitting height may reflect genetic and environmental factors, including early life nutrition, physical and social environments. Previous studies have reported divergent associations for height and chronic disease mortality, with positive associations observed for cancer mortality but inverse associations for circulatory disease mortality. Sitting height might be more strongly associated with insulin resistance; however, data on sitting height and mortality is sparse. Using the European Prospective Investigation into Cancer and Nutrition study, a prospective cohort of 409,748 individuals, we examined adult height and sitting height in relation to all-cause and cause-specific mortality. Height was measured in the majority of participants; sitting height was measured in ~253,000 participants. During an average of 12.5 years of follow-up, 29,810 deaths (11,931 from cancer and 7,346 from circulatory disease) were identified. Hazard ratios (HR) with 95% confidence intervals (CI) for death were calculated using multivariable Cox regression within quintiles of height. Height was positively associated with cancer mortality (men: HRQ5 vs. Q1=1.11, 95%CI=1.00-1.24; women: HRQ5 vs. Q1=1.17, 95%CI=1.07-1.28). In contrast, height was inversely associated with circulatory disease mortality (men: HRQ5 vs. Q1=0.63, 95%CI=0.56-0.71; women: HRQ5 vs. Q1=0.81, 95%CI=0.70-0.93). Although sitting height was not associated with cancer mortality, it was inversely associated with circulatory disease (men: HRQ5 vs. Q1=0.64, 95%CI=0.55-0.75; women: HRQ5 vs. Q1=0.60, 95%CI=0.49-0.74) and respiratory disease mortality (men: HRQ5 vs. Q1=0.45, 95%CI=0.28-0.71; women: HRQ5 vs. Q1=0.60, 95%CI=0.40-0.89). We observed opposing effects of height on cancer and circulatory disease mortality. Sitting height was inversely associated with circulatory disease and respiratory disease mortality

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore