4,865 research outputs found
Capture of liquid hydrogen boiloff with metal hydride absorbers
A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected
Universal Statistics of the Critical Depinning Force of Elastic Systems in Random Media
We study the rescaled probability distribution of the critical depinning
force of an elastic system in a random medium. We put in evidence the
underlying connection between the critical properties of the depinning
transition and the extreme value statistics of correlated variables. The
distribution is Gaussian for all periodic systems, while in the case of random
manifolds there exists a family of universal functions ranging from the
Gaussian to the Gumbel distribution. Both of these scenarios are a priori
experimentally accessible in finite, macroscopic, disordered elastic systems.Comment: 4 pages, 4 figure
Analysis of ischaemic crisis using the informational causal entropy-complexity plane
In the present work, an ischaemic process, mainly focused on the reperfusion stage, is studied using the informational causal entropy-complexity plane. Ischaemic wall behavior under this condition was analyzed through wall thickness and ventricular pressure variations, acquired during an obstructive flow maneuver performed on left coronary arteries of surgically instrumented animals. Basically, the induction of ischaemia depends on the temporary occlusion of left circumflex coronary artery (which supplies blood to the posterior left ventricular wall) that lasts for a few seconds. Normal perfusion of the wall was then reestablished while the anterior ventricular wall remained adequately perfused during the entire maneuver. The obtained results showed that system dynamics could be effectively described by entropy-complexity loops, in both abnormally and well perfused walls. These results could contribute to making an objective indicator of the recovery heart tissues after an ischaemic process, in a way to quantify the restoration of myocardial behavior after the supply of oxygen to the ventricular wall was suppressed for a brief period.Fil: Legnani, Walter. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Universidad Nacional de Lanús; ArgentinaFil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Redelico, Francisco Oscar. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Cymberknop, Leandro Javier. Instituto Tecnologico de Buenos Aires. Departamento de Bioingenieria; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Instituto Tecnologico de Buenos Aires. Departamento de Bioingenieria; ArgentinaFil: Rosso, Osvaldo Aníbal. Universidad de los Andes; Chile. Universidade Federal de Alagoas; Brasil. Hospital Italiano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
How collective asperity detachments nucleate slip at frictional interfaces
Sliding at a quasi-statically loaded frictional interface can occur via
macroscopic slip events, which nucleate locally before propagating as rupture
fronts very similar to fracture. We introduce a novel microscopic model of a
frictional interface that includes asperity-level disorder, elastic interaction
between local slip events, and inertia. For a perfectly flat and homogeneously
loaded interface, we find that slip is nucleated by avalanches of asperity
detachments of extension larger than a critical radius governed by a
Griffith criterion. We find that after slip, the density of asperities at a
local distance to yielding presents a pseudo-gap , where is a non-universal exponent that depends on
the statistics of the disorder. This result makes a link between friction and
the plasticity of amorphous materials where a pseudo-gap is also present. For
friction, we find that a consequence is that stick-slip is an extremely slowly
decaying finite size effect, while the slip nucleation radius diverges as
a -dependent power law of the system size. We discuss how these
predictions can be tested experimentally
Universal interface width distributions at the depinning threshold
We compute the probability distribution of the interface width at the
depinning threshold, using recent powerful algorithms. It confirms the
universality classes found previously. In all cases, the distribution is
surprisingly well approximated by a generalized Gaussian theory of independant
modes which decay with a characteristic propagator G(q)=1/q^(d+2 zeta); zeta,
the roughness exponent, is computed independently. A functional renormalization
analysis explains this result and allows to compute the small deviations, i.e.
a universal kurtosis ratio, in agreement with numerics. We stress the
importance of the Gaussian theory to interpret numerical data and experiments.Comment: 4 pages revtex4. See also the following article cond-mat/030146
Depinning of elastic manifolds
We compute roughness exponents of elastic d-dimensional manifolds in
(d+1)-dimensional embedding spaces at the depinning transition for d=1,...,4.
Our numerical method is rigorously based on a Hamiltonian formulation; it
allows to determine the critical manifold in finite samples for an arbitrary
convex elastic energy. For a harmonic elastic energy, we find values of the
roughness exponent between the one-loop and the two-loop functional
renormalization group result, in good agreement with earlier cellular automata
simulations. We find that the harmonic model is unstable with respect both to
slight stiffening and to weakening of the elastic potential. Anharmonic
corrections to the elastic energy allow us to obtain the critical exponents of
the quenched KPZ class.Comment: 4 pages, 4 figure
Structure of an intraplate fold-and-thrust belt: The Iberian Chain. A synthesis
The Iberian Chain is a complex intraplate fold-and-thrust belt resulting from the convergence between the Eurasian, Iberian and African plates during the late Eocene to the Miocene. The main trend of its contractional structures is NW-SE, but E-W, NE-SW and N-S-trending structures are also present. The boundaries of the chain with its surrounding foreland basins are always thrusts. The North-Iberian Thrust separates the chain from the Ebro Basin to the North, while the Serranía de Cuenca Thrust makes the SE boundary of the chain, separating it from the Tajo Basin and La Mancha foreland areas. Between these thrusts, the contractional structure is basement-involved, while South of the Serranía de Cuenca Thrust only Mesozoic and Cenozoic rocks are involved in the thrust-system, detached in the evaporitic Triassic materials. Two parts can be differentiated considering the major structure of the chain. The western and central areas hold two major anticlinoriums separated by the Almazán Synclinorium. East of the Teruel Depression, E-Wstriking N-verging thrusts in the North, and NW-SE-striking S-verging thrusts in the center and South are the dominant structures. The crust thickened during the Cenozoic contraction generating a mean crustal thickening of about 5km. The horizontal shortening obtained from cross-sections is 32km, and from a density-gravity section of 57.5km. These two values may be considered end values. The relief of the Iberian Chain has a strong areal coincidence with the contractional structures and the thickened crust, indicating that they are genetically related
Dynamics below the depinning threshold
We study the steady-state low-temperature dynamics of an elastic line in a
disordered medium below the depinning threshold. Analogously to the equilibrium
dynamics, in the limit T->0, the steady state is dominated by a single
configuration which is occupied with probability one. We develop an exact
algorithm to target this dominant configuration and to analyze its geometrical
properties as a function of the driving force. The roughness exponent of the
line at large scales is identical to the one at depinning. No length scale
diverges in the steady state regime as the depinning threshold is approached
from below. We do find, a divergent length, but it is associated only with the
transient relaxation between metastable states.Comment: 4 pages, 3 figure
Roughness at the depinning threshold for a long-range elastic string
In this paper, we compute the roughness exponent zeta of a long-range elastic
string, at the depinning threshold, in a random medium with high precision,
using a numerical method which exploits the analytic structure of the problem
(`no-passing' theorem), but avoids direct simulation of the evolution
equations. This roughness exponent has recently been studied by simulations,
functional renormalization group calculations, and by experiments (fracture of
solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is
significantly larger than what was stated in previous simulations, which were
consistent with a one-loop renormalization group calculation. The data are
furthermore incompatible with the experimental results for crack propagation in
solids and for a 4He contact line on a rough substrate. This implies that the
experiments cannot be described by pure harmonic long-range elasticity in the
quasi-static limit.Comment: 4 pages, 3 figure
Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation
Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as "extracellular respiration". Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (Kd) = 490 μM, in good agreement with recent experimental estimates, Kd = 255 μM. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration
- …