research

How collective asperity detachments nucleate slip at frictional interfaces

Abstract

Sliding at a quasi-statically loaded frictional interface can occur via macroscopic slip events, which nucleate locally before propagating as rupture fronts very similar to fracture. We introduce a novel microscopic model of a frictional interface that includes asperity-level disorder, elastic interaction between local slip events, and inertia. For a perfectly flat and homogeneously loaded interface, we find that slip is nucleated by avalanches of asperity detachments of extension larger than a critical radius AcA_c governed by a Griffith criterion. We find that after slip, the density of asperities at a local distance to yielding xσx_\sigma presents a pseudo-gap P(xσ)(xσ)θP(x_\sigma) \sim (x_\sigma)^\theta, where θ\theta is a non-universal exponent that depends on the statistics of the disorder. This result makes a link between friction and the plasticity of amorphous materials where a pseudo-gap is also present. For friction, we find that a consequence is that stick-slip is an extremely slowly decaying finite size effect, while the slip nucleation radius AcA_c diverges as a θ\theta-dependent power law of the system size. We discuss how these predictions can be tested experimentally

    Similar works