49 research outputs found

    Fall prediction in hypertensive patients via short-term HRV analysis

    Get PDF
    Falls are a major problem of later life having severe consequences on quality of life and a significant burden in occidental countries. Many technological solutions have been proposed to assess the risk or to predict falls and the majority is based on accelerometers and gyroscopes. However, very little was done for identifying first time fallers, which are very difficult to recognise. This paper presents a meta-model predicting falls using short term Heart Rate Variability (HRV) analysis acquired at the baseline. 170 hypertensive patients (age: 72 ± 8 years, 56 female) were investigated, of which 34 fell once in the 3 months after the baseline assessment. This study is focused on hypertensive patients, which were considered as convenient pragmatic sample, as they undergo regular outpatient visits, during which short term ECG can be easily recorded without significant increase of healthcare costs. For each subject, 11 consecutive excerpts of 5 minutes each (55 min) were extracted from ECGs recorded between 10:30 and 12:30 and analysed. Linear and nonlinear HRV features were extracted and averaged among the 11 excerpts, which were, then, considered for the statistical and data mining analysis. The best predictive meta-model was based on Multinomial Naïve Bayes, which enabled to predict first-time fallers with sensitivity, specificity and accuracy rates of 72%, 61%, 68% respectively

    Acute mental stress assessment via short term HRV analysis in healthy adults : a systematic review with meta-analysis

    Get PDF
    Mental stress reduces performances, on the work place and in daily life, and is one of the first causes of cognitive dysfunctions, cardiovascular disorders and depression. This study systematically reviewed existing literature investigating, in healthy subjects, the associations between acute mental stress and short term Heart Rate Variability (HRV) measures in time, frequency and non-linear domain. The goal of this study was to provide reliable information about the trends and the pivot values of HRV measures during mental stress. A systematic review and meta-analysis of the evidence was conducted, performing an exhaustive research of electronic repositories and linear researching references of papers responding to the inclusion criteria. After removing duplicates and not pertinent papers, journal papers describing well-designed studies that analyzed rigorously HRV were included if analyzed the same population of healthy subjects at rest and during mental stress. 12 papers were shortlisted, enrolling overall 758 volunteers and investigating 22 different HRV measures, 9 of which reported by at least 2 studies and therefore meta-analyzed in this review. Four measures in time and non-linear domains, associated with a normal degree of HRV variations resulted significantly depressed during stress. The power of HRV fluctuations at high frequencies was significantly depressed during stress, while the ratio between low and high frequency resulted significantly increased, suggesting a sympathetic activation and a parasympathetic withdrawal during acute mental stress. Finally, among the 15 non-linear measures extracted, only 2 were reported by at least 2 studies, therefore pooled, and only one resulted significantly depressed, suggesting a reduced chaotic behaviour during mental stress. HRV resulted significantly depressed during mental stress, showing a reduced variability and less chaotic behaviour. The pooled frequency domain measures demonstrated a significant autonomic balance shift during acute mental stress towards the sympathetic activation and the parasympathetic withdrawal. Pivot values for the pooled mean differences of HRV measures are provided. Further studies investigating HRV non-linear measures during mental stress are still required. However, the method proposed to transform and then meta-analyze the HRV measures can be applied to other fields where HRV proved to be clinically significant

    A smartphone-based tool for screening diabetic neuropathies : a mHealth and 3D printing approach

    Get PDF
    Diabetic neuropathy, a nerve damage associated with diabetes mellitus, can lead to severe disabilities, morbidity, and mortality, if not diagnosed in a timely manner. Diabetic neuropathies represent a huge economic burden and are a growing problem in sub-Saharan Africa, where they affect up to 61% of the diabetic population. Therefore, the United Nations (UN) has included the reduction of the diabetes-related mortality, as a priority in the Sustainable Development Agenda. A review of the current existing solutions for diabetic patients highlighted the fact that many are focused on lifestyle management and glycemia monitoring, while less are available for diabetic neuropathies screening, in particular in the digital health field. Beyond cutting-edge screening methods, which are time-consuming and equipment-heavy, traditional ones are effective, but they require specialised knowledge, which often lacks in low-resource settings. These settings, specifically those in low-income countries, are challenged by the lack of expertise, funds, spare parts, and consumables and harsh environmental conditions, which hinder the safe use of medical devices. This paper proposes a smart-tool for the screening of diabetic neuropathies based on the effective combination of three already established methods, through 3D-printed accessories and a smartphone app, aiming at contributing towards the UN’s Sustainable Development Goal 3, as well as the fourth industrial revolution in healthcare. Moreover, an on-field evaluation for this smart-tool is ongoing. So far, we recruited 11 normosubjects as a pilot study. The results demonstrate that it could be a viable solution to improve the standard of care of diabetic patients, specifically in the field of diabetic neuropathy screening, globally, as well as locally in low-resource settings

    Health technology assessment methods guidelines for medical devices : how can we address the gaps? The International Federation of Medical and Biological Engineering perspective

    Get PDF
    Objectives Current health technology assessment (HTA) methods guidelines for medical devices may benefit from contributions by biomedical and clinical engineers. Our study aims to: (i) review and identify gaps in the current HTA guidelines on medical devices, (ii) propose recommendations to optimize the impact of HTA for medical devices, and (iii) reach a consensus among biomedical engineers on these recommendations. Methods A gray literature search of HTA agency Web sites for assessment methods guidelines on devices was conducted. The International Federation of Medical and Biological Engineers (IFMBE) then convened a structured focus group, with experts from different fields, to identify potential gaps in the current HTA guidelines, and to develop recommendations to fill these perceived gaps. The thirty recommendations generated from the focus group were circulated in a Delphi survey to eighty-five biomedical and clinical engineers. Results Thirty-two panelists, from seventeen countries, participated in the Delphi survey. The responses showed a strong agreement on twenty-seven of thirty recommendations. Some uncertainties remain about the methods to accurately assess the effectiveness and safety, and interoperability of a medical device with other devices or within the clinical setting. Conclusions As medical devices differ from drug therapies, current HTA methods may not accurately reflect the conclusions of their assessment. Recommendations informed by the focus group discussions and Delphi survey responses aimed to address the perceived gaps, and to provide a more integrated approach in medical device assessments in combining engineering with other perspectives, such as clinical, economic, patient, human factors, ethical, and environmental

    A framework for designing medical devices resilient to low-resource settings

    Get PDF
    Background: To date (April 2021), medical device (MD) design approaches have failed to consider the contexts where MDs can be operationalised. Although most of the global population lives and is treated in Low- and Middle-Income Countries (LMCIs), over 80% of the MD market share is in high-resource settings, which set de facto standards that cannot be taken for granted in lower resource settings. Using a MD designed for high-resource settings in LMICs may hinder its safe and efficient operationalisation. In the literature, many criteria for frameworks to support resilient MD design were presented. However, since the available criteria (as of 2021) are far from being consensual and comprehensive, the aim of this study is to raise awareness about such challenges and to scope experts’ consensus regarding the essentiality of MD design criteria. Results: This paper presents a novel application of Delphi study and Multiple Criteria Decision Analysis (MCDA) to develop a framework comprising 26 essential criteria, which were evaluated and chosen by international experts coming from different parts of the world. This framework was validated by analysing some MDs presented in the WHO Compendium of innovative health technologies for low-resource settings. Conclusions: This novel holistic framework takes into account some domains that are usually underestimated by MDs designers. For this reason, it can be used by experts designing MDs resilient to low-resource settings and it can also assist policymakers and non-governmental organisations in shaping the future of global healthcare

    Radiomic and genomic machine learning method performance for prostate cancer diagnosis : systematic literature review

    Get PDF
    Background Machine learning algorithms have been drawing attention at the joining of pathology and radiology in prostate cancer research. However, due to their algorithmic learning complexity and the variability of their architecture, there is an ongoing need to analyze their performance. Objective This study assesses the source of heterogeneity and the performance of machine learning applied to radiomic, genomic, and clinical biomarkers for the diagnosis of prostate cancer. One research focus of this study was on clearly identifying problems and issues related to the implementation of machine learning in clinical studies. Methods Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, 816 titles were identified from the PubMed, Scopus, and OvidSP databases. Studies that used machine learning to detect prostate cancer and provided performance measures were included in our analysis. The quality of the eligible studies was assessed using the QUADAS-2 (quality assessment of diagnostic accuracy studies–version 2) tool. The hierarchical multivariate model was applied to the pooled data in a meta-analysis. To investigate the heterogeneity among studies, I2 statistics were performed along with visual evaluation of coupled forest plots. Due to the internal heterogeneity among machine learning algorithms, subgroup analysis was carried out to investigate the diagnostic capability of machine learning systems in clinical practice. Results In the final analysis, 37 studies were included, of which 29 entered the meta-analysis pooling. The analysis of machine learning methods to detect prostate cancer reveals the limited usage of the methods and the lack of standards that hinder the implementation of machine learning in clinical applications. Conclusions The performance of machine learning for diagnosis of prostate cancer was considered satisfactory for several studies investigating the multiparametric magnetic resonance imaging and urine biomarkers; however, given the limitations indicated in our study, further studies are warranted to extend the potential use of machine learning to clinical settings. Recommendations on the use of machine learning techniques were also provided to help researchers to design robust studies to facilitate evidence generation from the use of radiomic and genomic biomarkers

    Detection of melatonin-onset in real settings via wearable sensors and artificial intelligence : a pilot study

    Get PDF
    Circadian rhythms modulate physiological and behavioral processes of approximately 24-h periodicity. Alterations in the circadian timing system may lead to cardiovascular, metabolic or neurological diseases, cancers and sleep disorders, as well as to disruption of quality of life. Circadian rhythms can be tracked via laboratory tests measuring hormones in salivary, urinary or blood samples, which are collected in controlled environments. These tests are unsuitable for continuous monitoring in real-life, being expensive and time consuming, producing discrete information (i.e., few values per day) and requiring controlled environmental conditions (e.g., exposure to light can alter the samples). Thus, there is a need to develop non-invasive methods and tools to track circadian rhythms in real-life conditions

    A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings

    Get PDF
    Pneumonia is a leading cause of mortality in limited resource settings (LRS), which are common in low- and middle-income countries (LMICs). Accurate referrals can reduce the devastating impact of pneumonia, especially in LRS. Discriminating pneumonia from other respiratory conditions based only on symptoms is a major challenge. Machine learning has shown promise in overcoming the diagnostic difficulties of pneumonia (i.e., low specificity of symptoms, lack of accessible diagnostic tests and varied clinical presentation). Many scientific papers are now focusing on deep-learning methods applied to clinical images, which is unaffordable for initial patient referral in LMICs. The current study used a dataset of 4500 patients (1500 patients affected by bronchitis, 3000 by pneumonia) from a middle-income country, containing information on subject population characteristics, symptoms and laboratory test results. Manual feature selection was performed, focusing on clinical symptoms that are easily measurable in LRS and in community settings. Three common machine learning methods were tested and compared: logistic regression; decision tree and support vector machine. Models were developed through a holdout process of training-validation and testing. We focused on six clinically relevant, easily interpreted patient symptoms as best indicators for pneumonia. Our final model was a decision tree, achieving an AUC of 93%, with the advantage of being fully intelligible and easily interpreted. The performance achieved suggested that intelligible machine learning models can enhance symptom-based referral of pneumonia in LRS and in community settings

    A self-attention deep neural network regressor for real time blood glucose estimation in paediatric population using physiological signals

    Get PDF
    With the advent of modern digital technology, the physiological signals (such as electrocardiogram) are being acquired from portable wearable devices which are being used for non-invasive chronic disease management (such as Type 1 Diabetes). The diabetes management requires real-time assessment of blood glucose which is cumbersome for paediatric population due to clinical complexity and invasiveness. Therefore, real-time non-invasive blood glucose estimation is now pivotal for effective diabetes management. In this paper, we propose a Self-Attention Deep Neural Network Regressor for real-time non-invasive blood glucose estimation for paediatric population based on automatically extracted beat morphology. The first stage performs Morphological Extractor based on Self-Attention based Long Short-Term Memory driven by Convolutional Neural Network for highlighting local features based on temporal context. The second stage is based on Morphological Regressor driven by multilayer perceptron with dropout and batch normalization to avoid overfitting. We performed feature selection via logit model followed by Spearman’s correlation among features to avoid feature redundancy. We trained as tested our model on publicly available MIT/BIH-Physionet databases and physiological signals acquired from a T1D paediatric population

    The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms : a systematic review

    Get PDF
    Artificial Intelligence (AI) systems using symptoms/signs to detect respiratory diseases may improve diagnosis especially in limited resource settings. Heterogeneity in such AI systems creates an ongoing need to analyse performance to inform future research. This systematic literature review aimed to investigate performance and reporting of diagnostic AI systems using machine learning (ML) for pneumonia detection based on symptoms and signs, and to provide recommendations on best practices for designing and implementing predictive ML algorithms. This article was conducted following the PRISMA protocol, 876 articles were identified by searching PubMed, Scopus, and OvidSP databases (last search 5th May 2021). For inclusion, studies must have differentiated clinically diagnosed pneumonia from controls or other diseases using AI. Risk of Bias was evaluated using The STARD 2015 tool. Information was extracted from 16 included studies regarding study characteristics, ML-model features, reference tests, study population, accuracy measures and ethical aspects. All included studies were highly heterogenous concerning the study design, setting of diagnosis, study population and ML algorithm. Study reporting quality in methodology and results was low. Ethical issues surrounding design and implementation of the AI algorithms were not well explored. Although no single performance measure was used in all studies, most reported an accuracy measure over 90%. There is strong evidence to support further investigations of ML to automatically detect pneumonia based on easily recognisable symptoms and signs. To help improve the efficacy of future research, recommendations for designing and implementing AI tools based on the findings of this study are provided
    corecore