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Abstract

Background: Machine learning algorithms have been drawing attention at the joining of pathology and radiology in prostate
cancer research. However, due to their algorithmic learning complexity and the variability of their architecture, there is an ongoing
need to analyze their performance.

Objective: This study assesses the source of heterogeneity and the performance of machine learning applied to radiomic,
genomic, and clinical biomarkers for the diagnosis of prostate cancer. One research focus of this study was on clearly identifying
problems and issues related to the implementation of machine learning in clinical studies.

Methods: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, 816 titles
were identified from the PubMed, Scopus, and OvidSP databases. Studies that used machine learning to detect prostate cancer
and provided performance measures were included in our analysis. The quality of the eligible studies was assessed using the
QUADAS-2 (quality assessment of diagnostic accuracy studies–version 2) tool. The hierarchical multivariate model was applied

to the pooled data in a meta-analysis. To investigate the heterogeneity among studies, I2 statistics were performed along with
visual evaluation of coupled forest plots. Due to the internal heterogeneity among machine learning algorithms, subgroup analysis
was carried out to investigate the diagnostic capability of machine learning systems in clinical practice.

Results: In the final analysis, 37 studies were included, of which 29 entered the meta-analysis pooling. The analysis of machine
learning methods to detect prostate cancer reveals the limited usage of the methods and the lack of standards that hinder the
implementation of machine learning in clinical applications.

Conclusions: The performance of machine learning for diagnosis of prostate cancer was considered satisfactory for several
studies investigating the multiparametric magnetic resonance imaging and urine biomarkers; however, given the limitations
indicated in our study, further studies are warranted to extend the potential use of machine learning to clinical settings.
Recommendations on the use of machine learning techniques were also provided to help researchers to design robust studies to
facilitate evidence generation from the use of radiomic and genomic biomarkers.

(J Med Internet Res 2021;23(4):e22394) doi: 10.2196/22394
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Introduction

Prostate cancer (PCa) is the second most diagnosed cancer
worldwide in men [1,2]. To guarantee cancer-specific survival,
early detection of PCa is essential at a treatable stage. The most
common method to diagnose PCa is via transrectal
ultrasonography (TRUS) [3]. The rapid development of medical
imaging techniques and modalities has demonstrated great value
in the screening, diagnosis, treatment response measurement,
and prognosis evaluation of PCa. In particular, radiomic
investigation, defined as computationally extracting quantitative
image features for the characterization of disease patterns [4],
has been intensively applied to tumor detection, localization,
staging, aggressiveness assessment, treatment decision-making
assistance, and patient follow-up in PCa [5] .

More recently, multiparametric magnetic resonance imaging
(mpMRI) has been demonstrated to be a better radiomic
biomarker than systematic TRUS biopsy, achieving high
diagnostic accuracy and becoming a clinical routine
investigation for suspected PCa patients [6,7]. The second
version of the Prostate Imaging Reporting and Data System
(PI-RADS-V2) was updated in regard to minimum technical
acquisition parameters and image interpretation [8]. It describes
a standard prostate mpMRI protocol that combines anatomical
T2-weighted images with functional sequences, that is,
diffusion-weighted imaging (DWI) or dynamic
contrast-enhanced (DCE) sequences.

Alongside radiomic investigation, there are numerous Food and
Drug Administration–approved genomic biomarkers underlying
the biomolecular functions most strongly associated with clinical
outcomes. In fact, a major focus of personalized medicine has
been the biomolecular characterization of tumors by integrating
genomics into clinical oncology to identify unique druggable
targets and generate higher-order tumor classification methods
that can support clinical treatment decisions [9]. They are mainly
used to decide whether biopsy screening is necessary and
whether patients require primary treatment (such as radical
prostatectomy or radiation therapy) [10]. The combination of
biopsy screening and evaluation of the Gleason score still
remains the most widely accepted grading system in the
evaluation of prostatic adenocarcinoma [11]. The Gleason
grading system is based on a morphologic continuum of
architectural dedifferentiation and is directly correlated with
response to therapy and mortality rate. However, novel
biomarker tests that can potentially detect PCa from blood,
urine, tissue, and semen samples continue to be investigated.
Prostate-specific antigen (PSA) is the most commonly used
biomarker for the management of PCa [12]. Increased PSA
density has been shown to be associated with increased risk of
PCa compared to healthy or benign prostatic hyperplasia patients
[13]. The Prostate Health Index and 4Kscore utilize isoforms
of PSA and its precursors to help risk-stratify patients with an
abnormal PSA level. In addition, microRNAs have an important
role during tumor progression, and their combination with PSA
serum can improve prediction of PCa status [14-16]. Other
proposed biomarkers that belong to various classes of biological
compounds, including proteins and metabolites, have shown to
be noninvasive methods with high diagnostic potential [17].

Over the last decade, the landscape for PCa detection tools has
expanded to include novel biomarkers, clinical information,
genomic assays, and noninvasive imaging tests. The prospect
of detecting PCa using readily available clinical and
demographic health information is a potentially innovative part
of improving screening practices [18].

In this scenario, machine learning (ML) is helping researchers
in identifying and discovering new biomarkers to detect PCa.
ML is a branch of artificial intelligence (AI) techniques based
on the development and training of algorithms by learning from
data and the performance of predictions. ML methods are able
to improve and learn over time in a more efficient way than
classical statistical approaches [19]. Therefore, ML has been
widely used in radiology and recently in the field of
bioinformatics [6,20]. A recent field of ML, deep learning (DL),
is based on artificial neural networks, which offer superior
problem-solving capabilities applied to large heterogenous data
sets [20,21]. Specifically, ML allows the integration or
combination of different layers of data, such as those from
medical images, laboratory results, clinical outcomes,
biomarkers, and other biological features, for better
prognostication and stratification of patients toward personalized
medicine [22,23]. However, the accuracy of such algorithms
can be highly impacted by the complex workflows adopted to
develop and generalize such ML algorithms [24,25]. High
heterogeneity is expected, as ML problems are usually regarded
as black boxes, and the consideration of all possible risk factors
and transformation is tremendously difficult [26,27]. Moreover,
there are no clear guidelines on how to develop ML approaches
for medical studies.

Therefore, this study aimed to suggest an integrated estimate
of the accuracy for use of ML algorithms in detecting PCa
through a systematic review and meta-analysis of the available
studies. Due to the internal heterogeneity of ML algorithms,
subgroup analyses helped in investigating the diagnostic
capability of ML systems and highlighting the sources of bias
and common pitfalls to avoid in order to assure reproducibility
among studies. Subgroup analyses were mainly based on the
model choice, model development, and validation methods to
identify potential covariates that could influence the diagnostic
performance of ML.

This review helps to support ML studies in rising up the pyramid
of evidence. In fact, we identify and discuss recurrent factors
that hinder the uptake of these studies in clinical settings.

To the best of the authors’ knowledge, there are no systematic
review and meta-analysis studies evaluating the performance
and estimating the current status of existing approaches on PCa
detection. Therefore, this study aims to fill the gap in the existing
literature and gather recommendations on ML model
development to achieve robust results to automatically detect
PCa.

Methods

We conducted and reported this meta-analysis in accordance
with PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines [28]. Two researchers
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(RC and MF), who were blinded to the articles’ author
information, conducted the study inclusion, data extraction, and
assessment of the risk of bias independently. A third author
(CC) was consulted in case of disagreements.

Search Strategy
The PubMed, Scopus, and OvidSP (ie, Embase) databases were
searched to identify studies evaluating the accuracy of radiomic,
clinical, and genomic biomarkers in the diagnosis of PCa. The
following criteria were used to limit the research: papers
published in the last 5 years (from 2015 to 2020) to guarantee
homogeneity among radiomic studies, as the new protocol
(PI-RADS) for mpMRI was updated in 2015 [8]; study on adult
humans (ie, not animals); language (English); and full-text
publications. The search took place on February 24, 2020. The
reference lists of the included studies were checked, and the
authors were contacted if required. The search strategy and
queries for each search database are presented in Table S1 in
Multimedia Appendix 1.

An author (RC) retrieved the initial search results and removed
duplicates via Excel (Microsoft). Subsequently, another author
(MF) manually searched for and removed any remaining
duplicates. Finally, RC and MF independently screened the
studies by title, abstract, and keywords, after which the full texts
of the selected studies were assessed by inclusion and exclusion
criteria. The main considerations for study inclusion were if
machine learning was fully applied in distinguishing individuals
or lesions with clinically diagnosed PCa from controls and if
the study assessed the accuracy of such applications. Detailed
inclusion and exclusion criteria are reported in Table S2 in
Multimedia Appendix 1.

Data Extraction and Outcomes of Interest
After the evaluation was completed, two authors extracted the
following information from the selected literature: literature
data—the first author, publication date, study population,
number of patients, study design, and data collection; basic
research information—age, Gleason score, and PSA level, where
possible; information regarding the reference standard used in
individual studies; definitions of positive and negative PCa (PCa
positive and control) and methodologies to distinguish
individuals or lesions with PCa from the control group; specific
methodologies to process and classify data for use in machine
learning algorithms; and the sensitivity, specificity, and, if
available, true-positive (TP), true-negative (TN), false-positive
(FP), and false-negative (FN) rates.

The authors independently graded the quality of the eligible
studies using the quality assessment of diagnostic accuracy
studies–version 2 (QUADAS-2) tool [29]. The full process is
provided in the supplementary materials in Multimedia
Appendix 1.

Meta-analysis Paper Inclusion Criteria and Subgroup
Analysis
For radiomic analysis, due to the very low number of included
studies investigating central gland and transition zone (TZ)
prostate tumors, only studies investigating the peripheral zone
were included in the meta-analysis. This was also due to the

fact that central gland and TZ prostate tumors have significantly
different quantitative imaging signatures [30], and they could
have highly biased the final results.

Due to the low number of studies employing 3D volumes of
interest (VOIs) to extract quantitative features, only studies
delineating 2D regions of interest (ROIs) were included in the
meta-analysis to reduce the risk of bias. This was mainly due
to the fact that significant differences were found between
prediction performance when using 3D VOIs and that when
using 2D ROIs [31]. If studies investigated several diagnostic
imaging techniques via ML, only classification models using
mpMRI sequences were included in the meta-analysis.

To reduce heterogeneity among the selected studies, subgroup
analyses were carried out for radiomic and genomic studies due
to their intrinsic differences in data acquisition, analysis, and
feature extraction. Radiomic subgroup analyses helped to
investigate the role of the mpMRI biomarker in detecting PCa
via ML, whereas genomic subgroup analyses were carried out
to understand the role of genomic biomarkers in detecting PCa
via ML.

Several covariates suitable for subgroup analysis were identified
during the review process where the individual peculiarities of
the studies, which may affect the outcome, were investigated.

The included studies were investigated if they explored a patient-
or lesion-based model, validation approaches (cross-validation,
hold-out approach or external validation, or no validation), ML
algorithms (regression-based model, tree-based model, or deep
learning algorithms), whether the studies used a DL or ML
approach, or whether the employed data set was balanced or
unbalanced. For genomic studies, the use of different specimens
(ie, urine, serum, semen, and tissue) was also investigated in a
subgroup analysis. One study [17] investigated both urine and
serum specimens separately; therefore, ML performance was
included for both predictors in the meta-analysis.

In case a study investigated multiple ML algorithms, only the
method achieving the highest area under the curve (AUC) was
included in the meta-analysis, as AUC is a good estimator of
ML performance.

Statistical Analysis and Software Tools
This meta-analysis was conducted via the Open Meta-Analyst
Software tool, and statistical significance was expressed with
95% CIs. Pooled estimates for sensitivity and specificity with
the corresponding 95% CIs were used to determine the accuracy
of machine learning for detecting PCa in radiomic and genomic
studies. From these data, we generated a hierarchical summary
receiver operating characteristic curve (HSROC) and coupled
forest plots by random-effects model. Heterogeneity among
studies was assessed by calculation of the inconsistency index

(I2) and evaluation of the Cochran χ2 test (Q test). An I2 of ≥50%
and P<.001 indicated substantial between-study heterogeneity.
The TP/FP/TN/FN values were extracted or calculated from
each independent study. A correction factor of 0.5 was added
if any of the TP/FP/TN/FN rates reported a value of 0, in order
to prevent zero cell count problem [32].
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In our meta-analysis, a multivariate random-effects model was
used to consider both within- and between-subject variability
and threshold effects [33]. The HSROC curve was specified by
pooled sensitivity and specificity point. Attempts were made
to resolve the heterogeneity by performing a subgroup analysis
[34].

Results

Literature Search
According to the search strategy described above, 877 titles
were identified in PubMed, Scopus, and OvidSP. After removing

duplicates, 816 titles were considered. Of these, 708 were
excluded after reading of the abstracts because they did not meet
the inclusion criteria. From the remaining 108 full-text articles,
71 were removed due to the exclusion criteria. Finally, 37 full
texts were included in the qualitative analysis, and 29 studies
were considered appropriate for inclusion in the meta-analysis.
A flowchart of the literature search is shown in Figure 1.

The distribution of the risk of bias evaluated via the QUADAS-2
tool for the included studies is presented in the supplementary
materials (Figure S1 in Multimedia Appendix 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of literature search: included/excluded titles,
abstracts, and full papers. ML: machine learning; MRI: magnetic resonance imaging; PCa: prostate cancer; TZ: transition zone; VOI: volume of interest.

Characteristics of the Included Studies
The publication years ranged from 2015 to 2020 to guarantee
homogeneity among radiomic studies, as the new PI-RADS

was updated in 2015 [8]. All patients were diagnosed with PCa
by biopsy. The main characteristics of the studies are reported
in Table 1. The extracted raw data are presented in Tables S3
and S4 in Multimedia Appendix 1.
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Table 1. Characteristics of 37 studies included in the systematic review.

Patients (average over the number of studies), nStudies, nCharacteristics

Study type 

2210 (276.25)8Prospective 

6414 (221.17)29Retrospective 

Data set type

7760 (235.15)33Private data set 

399 (199.5)2Public database (SPIE-AAPM-NCIa PROSTATEx challenge) 

465 (232.5)2Mixed (private and public) data set 

Classification algorithms

1621(405.25)4Random forest 

4678 (233.9)20Regression-based models 

180 (90)2Partial least squares discriminant analysis (PLS-DA) 

531Linear discriminant analysis (LDA) 

65 (32.5)2Support vector machine (SVM) 

671Classification and regression tree (CART) 

1012 (506)2Artificial neural networks (ANNs) 

1951Deep neural networks (DNNs) 

696 (232)3Convolutional neural networks (CNNs) 

571Deep learning: SNCSAEb 

Predictor type

5058 (252.9)20Multiparametric MRIc 

3132 (240.92)13Genetic or molecular biomarker 

930 (155)6Urine  

901 (300.3)3Serum  

108 (54)2Semen  

800 (400)2Tissue  

2812 (703)4Clinical data 

Validation method 

6540 (225.52)29Internal validation 

1380 (460)3External validation 

3641Internal and external validation 

704 (140.8)5Unknown 

aSPIE-AAPM-NCI: International Society for Optics and Photonics–American Association of Physicists in Medicine–National Cancer Institute.
bSNCSAE: stacked nonnegativity constraint sparse autoencoders.
cMRI: magnetic resonance imaging.

Quantitative Analysis (Meta-analysis)
Of the final 37 papers, 29 were considered for the meta-analysis.
Eight studies were excluded to reduce heterogeneity among the
studies. Of those, 2 studies were excluded because they extracted
radiomic features from VOIs [35,36], and 2 studies [37,38] were
excluded because they only focused on detecting TZ tumors.
Due to the low number of studies investigating TZ tumors, a
comparative assessment of the results for the peripheral zone,
central gland, and TZ was not possible.

Studies [18,39-41] employing only clinical information were
excluded because a minimum sample of 5 studies is
recommended for a meta-analysis [34,42]. In fact, 5 or more
studies are needed to reasonably achieve power from
random-effects meta-analyses [43].

Radiomic
All the included studies for the radiomic analysis are reported
in Table 2. A total of 4438 independent samples were inspected
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from 16 studies with sensitivity and specificity ranging from
0.62 to 0.99 and 0.51 to 0.98, respectively.

Multivariate meta-analysis via the HSROC model was assessed
for all the studies (Figure S2 in Multimedia Appendix 1). The
pooled sensitivity and specificity were 0.815 (95% CI
0.410-0.999) and 0.828 (95% CI 0.424-0.999), respectively.

The calculated heterogeneity values for pooled sensitivity and
specificity were 84% and 79% (P<.001), respectively; therefore,
a random-effects model was adopted to generate coupled forest
plots (Figure S3 in Multimedia Appendix 1).

Subgroup Analysis

To resolve the heterogeneity, subgroup analysis was conducted
for different covariates. The subgroup analysis per model-based
covariate is shown in Figure 2. Subgroup 1 included the studies
that employed a lesion-based ML approach. Those studies
[44-54] employed multiple lesions for each patient enrolled in
the study. Subgroup 2 gathered those studies [55-59] that
enrolled two distinct groups (PCa and controls) and employed
a patient-based ML approach. The heterogeneity in the
subgroups was greater than 70% (subgroup 1: P<.001, subgroup
2: P=.002).
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Table 2. Accuracy measures of radiomic studies for the systematic review.

Spek (lower-
upper)

Senj (lower-
upper)

TN,i nFP,h nFN,g nTP,f nMLd

methodse
Crossvalc/
split/none

Total sample

(PCa+, PCa-)b
Patients,
n

Model

basisa
Study, year

0.890

(0.829-0.932)

0.620

(0.517-0.713)

130163557ANN120 (60, 60)238 (92, 146)71LBZhao, 2015
[44]

0.981

(0.880-0.997)

0.962

(0.861-0.991)

531251LDANone106 (53, 53)53LBValerio, 2016
[45]

0.801

(0.751-0.844)

0.886

(0.817-0.931)

2305714109RFCrossval410 (123, 287)224LBLay, 2017
[46]

0.964

(0.786-0.995)

0.963

(0.779-0.995)

271126SNCSAECrossval53 (26, 27)18LBReda, 2017
[47]

0.890

(0.841-0.925)

0.907

(0.868-0.936)

1942427264LRCrossval509 (291, 218)169LBStarobinets,
2017 [48]

0.839

(0.750-0.900)

0.696

(0.587-0.787)

78152455DCNNCrossval172 (79, 93)172PBWang, 2017
[36]

0.956

(0.905-0.980)

0.899

(0.837-0.939)

129614125multi-
modal
CNN

275 (139,
135)

913 (463, 450)364LBLe, 2017 [52]

0.909

(0.834-0.952)

0.875

(0.733-0.947)

909535LASSO
LR

Crossval191 (36, 155)204LBKwon, 2018
[49]

0.906

(0.746-0.969)

0.870

(0.665-0.957)

293320DNN55 (23, 32)547 (261, 286)195LBSong, 2018
[50]

0.983

(0.891-0.998)

0.982

(0.884-0.997)

591155LR155 (55, 60)381 (182, 199)381PBChen, 2019
[56]

0.875

(0.614-0.969)

0.753

(0.648-0.835)

1422061LRCrossval97 (81, 16)65LBDevine, 2019
[51]

0.934

(0.878-0.965)

0.994

(0.958-0.999)

12791161SVMCrossval297 (161, 136)11LBGholizadeh,
2019 [54]

0.865

(0.714-0.943)

0.955

(0.836-0.989)

325242LRNone81 (44, 37)81PBMa, 2019 [58]

0.513

(0.360-0.664)

0.981

(0.876-0.997)

2019151CART91 (52, 39)170 (102, 68)67LBMazaheri,
2019 [53]

0.921

(0.782-0.974)

0.821

(0.636-0.924)

353523LR66 (28, 38)199 (85, 114)199PBQi, 2019 [57]

0.815

(0.625-0.921)

0.700

(0.473-0.859)

225614RFCrossval140 (60, 80)140PBZhang, 2019
[59]

aLB: lesion-based model; PB: patient-based model.
bPCa: prostate cancer.
cCrossval: cross-validation techniques.
dML: machine learning.
eANN: artificial neural networks; LDA: linear discriminant analysis; RF: random forest; SNCSAE: stacked nonnegativity constraint sparse autoencoders;
LR: logistic regression; DCNN: deep convolutional neural networks; LASSO: least absolute shrinkage and selection operator; DNN: deep neural
networks; SVM: support vector machine; CART: classification and regression tree.
fTP: true-positive.
gFN: false-negative.
hFP: false-positive.
iTN: true-negative.
jSen: sensitivity.
kSpe: specificity.
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Figure 3 shows the subgroup analysis among studies that
employed internal cross-validation techniques (subgroup 1)
[46-49,51,54,55,59], split validation approaches (subgroup 2)

[44,50,52,53,56,57], and no validation (subgroup 3) [45,58].
The heterogeneity for subgroups 1 and 2 was around 80%
(P<.001).

Figure 2. Subgroup analysis for the model-based covariate in radiomic studies. Subgroup 1: lesion-based models; subgroup 2: patient-based models.
FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 3. Subgroup analysis for the validation covariate in radiomic studies. Subgroup 1: internal cross-validation; subgroup 2: hold-out approach or
external validation; subgroup 3: no validation. FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 4 shows the subgroup analysis for regression-based
models (subgroup 1) [45,48,49,51,56-58], tree-based models
(subgroup 2) [46,53,59], and DL methods (subgroup 3)
[44,47,50,52,55]. One study was not included [54], as it was
the only study employing a support vector machine model. The
heterogeneity among groups oscillated between 74% and 86%
(subgroup 1: P=.001, subgroup 2: P=.01, subgroup 3: P<.001).

The results of the subgroup analysis to discriminate among
machine and deep learning methods are reported in Figure 5.
Subgroup 1 included the studies [45,46,48,49,51,53,56-59]
employing ML methods, whereas subgroup 2 comprised the
studies [44,47,50,52,55] employing DL methods (based on
artificial neural networks) such as convolutional neural networks

and deep neural networks. The I2 statistics for subgroups 1 and
2 were 76% and 86% (P<.001), respectively.

Figure 6 shows the subgroup analysis based on whether the
studies employed a balanced or unbalanced data set. A data set
was defined as unbalanced if it had more than 30% of the total
observations in one specific class rather than the other (PCa and
controls) and did not apply any correction on performance (eg,
synthetic minority oversampling technique [SMOTE] or voting
techniques). The heterogeneity of subgroup 1 [36,44,51,53] was
around 58% (P=.005). As a result, among the several covariates,
the imbalance covariate was the only one by which the
heterogeneity could be partially resolved.

Therefore, Devine et al [51], Wang et al [36], Mazaheri et al
[53], and Zhao et al [44] were excluded from the coupled forest
plot (Figure 7).

Figure 8 shows the HSROC curve for the studies employing
balanced data sets to automatically detect PCa. The pooled
sensitivity and specificity were 0.808 (95% CI 0.38-0.999) and
0.831 (95% CI 0.41-0.999), respectively.
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Figure 4. Subgroup analysis for the machine learning algorithm covariate in radiomic studies. Subgroup 1: regression-based models; subgroup 2:
tree-based models; subgroup 3: deep learning methods. FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 5. Subgroup analysis for the machine learning or deep learning covariate in radiomic studies. Subgroup 1: machine learning–based models;
subgroup 2: deep learning methods. FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 6. Subgroup analysis for the imbalance covariate in radiomic studies. Subgroup 1: balanced data sets; subgroup 2: unbalanced data sets. FN:
false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

J Med Internet Res 2021 | vol. 23 | iss. 4 | e22394 | p. 9https://www.jmir.org/2021/4/e22394
(page number not for citation purposes)

Castaldo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. Subgroup analysis for the model-based covariate in a subset of radiomic studies. Subgroup 1: lesion-based models; subgroup 2: patient-based
models. FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 8. Overall hierarchical summary receiver operating characteristic curve (HSROC) for a subset of radiomic studies. HSROC was calculated for
radiomic studies with low heterogeneity, excluding 4 studies [36,44,51,53].

Genomic
All the included studies for the genomic analysis are reported
in Table 3. A total of 3221 independent samples were inspected
from 14 studies and included in the meta-analysis, with
sensitivity and specificity ranging from 0.67 to 0.95 and 0.15
to 0.97, respectively.

An HSROC model was assessed for all genomic studies (Figure
S4 in Multimedia Appendix 1). The pooled sensitivity and
specificity were 0.883 (95% CI 0.541-0.999) and 0.734 (95%
CI 0.330-0.999), respectively.

The calculated heterogeneity values for the pooled sensitivity
and specificity were 73% and 92% (P<.001), respectively;

therefore, a random-effects model was adopted to generate the
coupled forest plots (Figure S5 in Multimedia Appendix 1).

Subgroup Analysis

To resolve this heterogeneity, subgroup analyses were conducted
for several covariates. The subgroup analysis for model-based
covariates is shown in Figure 9. Subgroup 1 included the studies
[60,61] that used malignant lesions and benign-adjacent tissue
from PCa patients. Subgroup 2 gathered those studies
[15-17,62-69] that enrolled two distinct groups (PCa and
controls) and employed a patient-based ML approach. The
heterogeneity for subgroup 1 was greater than 80%, whereas
for subgroup 2 it was around 60%. However, subgroup 2 only
included 2 studies.
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Table 3. Accuracy measures of genomic studies for the systematic review.a

Spej

(lower-upper)

Seni

(lower-upper)

TN,h nFP,g nFN,f nTP,e nCrossvald/
split/none

Total sample

(PCa+, PCa-)c
Patients,
n

Predic-
tor

Model

basisb
Study, year

0.208

(0.141-0.295)

0.899

(0.817-0.947)

2284980None195 (89, 106)195UrinePBDonovan, 2015
[62]

0.385

(0.263-0.522)

0.917

(0.587-0.988)

2032111Crossval66 (12, 54)66SemenPBRoberts, 2015
[16]

0.975

(0.941-0.99)

0.7

(0.612-0.775)

19553684320 (120,
200)

580 (180, 400)580SerumPBZhang, 2015
[63]

0.836

(0.732-0.904)

0.768

(0.694-0.829)

611235116Crossval224 (15, 73)224UrinePBMengual, 2016
[64]

0.814

(0.706-0.889)

0.822

(0.717-0.894)

57131360None143 (73, 70)143UrinePBSalido-Guadar-
rama, 2016 [15]

0.969

(0.65-0.998)

0.675

(0.449-0.841)

15061334 (19, 15)89 (49, 40)89SerumPBDereziński,
2017 [17]

0.733

(0.467-0.896)

0.895

(0.663-0.974)

11421734 (19,15)89 (49, 40)89UrinePBDereziński,
2017a [17]

0.918

(0.802-0.969)

0.845

(0.79-0.888)

45433180262 (213,
49)

398 (286, 112)101TissueLBKirby, 2017
[60]

0.722

(0.481-0.879)

0.917

(0.721-0.979)

135222None42 (34, 18)42SemenPBBarceló, 2018
[65]

0.896

(0.773-0.956)

0.93

(0.805-0.977)

435340Crossval91 (43, 48)91UrinePBAmante, 2019
[66]

0.687

(0.433-0.864)

0.923

(0.609-0.989)

11511229 (13, 16)94 (42, 52)94UrinePBBrikun, 2019
[67]

0.773

(0.556-0.902)

0.873

(0.756-0.938)

17574877 (55, 22)183 (108, 75)183UrinePBGao, 2019 [69]

0.933

(0.769-0.983)

0.939

(0.897-0.964)

28213199242 (212,
30)

795 (699, 96)699TissueLBPatel, 2019 [61]

0.71

(0.643-0.769)

0.937

(0.782-0.984)

14258230None232 (32, 200)232SerumPBSantotoribio,
2019 [68]

aAll studies employed regression-based models.
bLB: lesion-based model; PB: patient-based model.
cPCa: prostate cancer.
dCrossval: cross-validation techniques.
eTP: true-positive.
fFN: false-negative.
gFP: false-positive.
hTN: true-negative.
iSen: sensitivity.
jSpe: specificity.

The subgroup analysis among studies that employed internal
cross-validation techniques (subgroup 1) [16,64,66], split
validation approaches (subgroup 2) [17,60,61,63,67,69], and

no validation (subgroup 3) [15,62,65,68] is shown in Figure 10.
For subgroups 1 and 2, the heterogeneity was greater than 50%.
In subgroup 3, the heterogeneity was around 20%.
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Figure 9. Subgroup analysis for the model-based covariate in genomic studies. Subgroup 1: lesion-based models; subgroup 2: patient-based models.
FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 10. Subgroup analysis for the validation covariate in genomic studies. Subgroup 1: internal cross-validation; subgroup 2: hold-out approach or
external validation; subgroup 3: no validation. FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

A subgroup analysis was also carried out based on the specimen
used by the genomic studies (ie, urine [15,17,62,64,66,67,69],
semen [16,65], serum [17,63,68], and tissue [60,61] biomarkers).
The subgroup of studies investigating urine biomarkers to
automatically detect PCa presented a lower heterogeneity than
studies employing tissue and serum biomarkers and included
more than 5 studies (Figure 11).

An inspection of ML algorithms among genomic studies was
not possible because all the included studies employed a
regression-based model (Table S4 in Multimedia Appendix 1).

Finally, the effect of using balanced or highly unbalanced data
sets in ML approaches was investigated (Figure 12). Seven
studies were included in subgroup 2, as they employed highly
unbalanced data sets. The heterogeneity of subgroup 1 was
around 36%, whereas subgroup 2 showed a high heterogeneity

(I2=84%, P<.001).

As a result, among several covariates, the imbalance covariate
was the only one by which the heterogeneity could be partially
resolved for more than 5 studies.

By inspecting Figure 12, Donovan et al [62] presented a very
low value for specificity; this was due to the fact that they fixed
the sensitivity threshold value at 90%.

Five studies employing urine specimens and balanced data sets
showed a very low heterogeneity (Figure 13) [15,17,66,67,69].

The HSROC curve for the studies employing balanced data sets
to automatically detect PCa via urine biomarkers is shown in
Figure 14. The pooled sensitivity and specificity were 0.812
(95% CI 0.577-0.999) and 0.8101 (95% CI 0.544-0.999),
respectively.
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Figure 11. Subgroup analysis for the predictor covariate in genomic studies. FN: false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 12. Subgroup analysis for the imbalance covariate in genomic studies. Subgroup 1: balanced data sets; subgroup 2: unbalanced data sets. FN:
false-negative; FP: false-positive; TN: true-negative; TP: true-positive.

Figure 13. Coupled forest plots for balanced studies. The included studies investigated urine specimens. FN: false-negative; FP: false-positive; TN:
true-negative; TP: true-positive.
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Figure 14. Hierarchical summary receiver operating characteristic curve (HSROC) for a subset of genomic studies. HSROC was calculated for genomic
studies with low heterogeneity [15,17,66,67,69].

Discussion

Principal Findings
This paper presents the results of a systematic literature review
with meta-analysis of articles investigating machine learning
algorithms to detect PCa via radiomic or genomic analysis. One
research focus of this study was on clearly evaluating how the
implementation of different ML approaches impacts the clinical
results. At this stage, due to the high heterogeneity of methods
and tools employed in the existing literature, no clear clinical
relevance on the use of ML for PCa can be drawn from this
study. This review shows that ML has helped to improve the
diagnostic performance of the detection of PCa, but challenges
still remain for clinical applicability of such methods, and more
research is needed. The presented literature aims to help in
building an ML system that is robust and computationally
efficient to assist clinicians in the diagnosis of PCa via radiomic
and genomic biomarkers.

In this review, 37 studies were shortlisted, and 29 studies were
included in a meta-analysis. All patients were diagnosed with
PCa by biopsy. However, not all the included studies reported
full information on the methods used to carry out biopsy (eg,
direct MRI-guided, cognitive fusion, or MRI-TRUS fusion
biopsy).

In the radiomic and genomic meta-analysis, 16 and 14 studies
were included, respectively. Heterogeneity among radiomic and
genomic studies was 84% and 73%, respectively. This was
expected, as ML methods are usually regarded as black boxes,
and the consideration of all possible transformations is onerous.

Moreover, there are no clear guidelines on how to develop AI
approaches for medical studies, even though a few
recommendations have been summarized by Foster et al [24]
and Chen et al [25]. Another font of heterogeneity in radiomic
studies may be due to the inclusion of PI-RADS score 3 and
Gleason score 3+3 lesions, which are equivocal and should be
disregarded in classification processes.

To partially solve the heterogeneity for the included studies,
subgroup analyses were conducted based on several covariates.
In the field of ML, applications where repeated measures or
records have been captured on each subject can affect the overall
performance. In most studies, the main aim is to predict if a
given subject is “sick” or a “control” subject. In these
applications, each subject has a single label type (eg, “sick” or
control case). Nonetheless, there are other classification
problems where each subject can have multiple labels. For
instance, multiple lesions can be extracted from the same
subject, and the control part can be represented by the
benign-adjacent prostate lesion. It has been demonstrated that
this phenomenon, known as identity confounding, can cause
discrepancy in classification performance [70,71]. Therefore,
the studies included in the meta-analysis were investigated to
determine whether they explored patient- or lesion-based
models. A patient-based model could be defined as a model that
is developed and assessed in a “subject-wise” fashion, where
all the records of each subject are considered as a group in the
training and testing set and when assessing the model
performance; conversely, a lesion-based model could be defined
as a model that is developed and assessed in a “record-wise”
fashion, where each measurement or record contributes to both
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the training and test sets and when assessing the model
performance [70].

In both radiomic and genomic studies, patient-based models
presented lower heterogeneity and performance than
lesion-based models; this could be due to the fact that
lesion-based models employed a bigger size sample, but the
models may be overfit due to repeated measures.

A second important covariate to examine in ML problems is
the data set construction. In particular, the data set is usually
divided into training and testing sets in order to reduce
overfitting problems [70,71]. The training set is often further
split into a training set and a validation set, which is used to
update model parameters. At least one procedure of internal or
external validation is required in ML approaches.
Cross-validation techniques are preferred if availability of data
is not a problem. It is also strongly suggested to retrain on a
subset of data or use an independent data set for external testing.
Therefore, “validation approach” was used as a covariate in
subgroup analysis. Validation approaches were divided into
cross-validation, hold-out approach (split) or external validation,
and no validation. In both radiomic and genomic analysis,
studies employing cross-validation techniques and hold-out
approaches had very high heterogeneity and similar
performances among them. High heterogeneity may be due to
the different cross-validation techniques used (eg, bootstrapping
[16,40,52], Monte Carlo cross-validation [17]) or the choice of
number of folders used in cross-validation methods; if an
external data set was used [52,60,61,63], differences in the study
protocols may have increased the bias among studies. Moreover,
few studies in radiomic [50,53,57,59] and genomic [17,67]
analysis employed both cross-validation and external testing.
Studies employing no validation showed very low heterogeneity
(only 2 studies in radiomic analysis), which may be due to the
absence of other confounding variables, and high performances
may be due to overfitting problems. A lower specificity was
only noted in genomic analysis; this was due to Donovan et al
[62], which used a fixed threshold for sensitivity at 90%.

Different ML approaches were also investigated among radiomic
studies as a possible covariate factor. There were no relevant
differences in heterogeneity or performance among subgroups
(Figure 4). All genomic studies employed regression-based
models. In fact, one limitation of the genomic studies was that
none of the selected studies explored the potential of ML
techniques at full capacity. Subgroup analysis was also
conducted among radiomic studies employing ML or DL (ie,
based on artificial neural networks) approaches. As expected,
heterogeneity among DL studies was higher than among the
studies employing other ML approaches to detect PCa. This
could be mainly due to the high complexity of DL methods and
hyperparameters. Moreover, DL approaches showed lower
performance due to the small sample sizes used; they need large
volumes of data to automatically identify patterns and achieve
high performance.

The imbalance covariate was crucial in this study. Unbalanced
and small data sets are very common in the medical field, and
ML algorithms tend to produce unsatisfactory classifiers when
handled with imbalanced data sets. Therefore, several techniques

to overcome this problem have been proposed over time [72].
In this review, none of the studies included in the subgroup of
unbalanced data sets had used any techniques to overcome the
problem. Only one study [56] used SMOTE, but it did not
employ a highly unbalanced data set.

For radiomic studies, after excluding studies that employed
highly unbalanced data sets, the heterogeneity was less than
50%. The final pooled sensitivity and specificity for the use of
mpMRI were 0.808 (95% CI 0.38-0.999) and 0.831 (95% CI
0.41-0.999), respectively.

For genomic studies, the heterogeneity dropped to 36% and
reached a value close to zero when Donovan et al [62] was
excluded because they fixed a threshold of 90% for sensitivity.
The final pooled sensitivity and specificity were 0.812 (95%
CI 0.577-0.999) and 0.8101 (95% CI 0.544-0.999), respectively.
The predictor used to estimate the final pooled sensitivity and
specificity was urine specimen.

Only 4 studies [18,39-41] investigating clinically based models
were identified through the search. All the included studies
adopted internal validation techniques (3 cross-validation
[39-41] and 1 internal split validation [18]). Two studies [40,41]
employed regression-based models, one [39] employed a
tree-based model, and lastly, one employed a DL approach [18].

Heterogeneity was very high among them (I2=96%, P=.01) due
to different sample sizes and diversity of predictors. However,
contributions from genomic and imaging biomarkers should be
considered to improve the overall performance of the clinically
based diagnostic models.

Comparison among genomic and radiomic studies was not
possible because they describe two different but complementary
prospective approaches to the disease. However, the pooled
sensitivity and specificity for both mpMRI and urine biomarkers
were around 80%, showing them to be promising biomarkers
in the detection of PCa via ML in clinical practice. The use of
mpMRI has shown great diagnostic potential [73]; however, its
analysis and interpretation are quite challenging, and there is
not a consensus on how to optimally extract significant
information. On the other side, genomic analyses have
significantly increased our understanding of PCa and greatly
improved patient risk classification, thus impacting treatment
decision making. Therefore, a new prospective approach is the
integration of radiomic and genomic signatures, commonly
known as radiogenomics [74-76], in order to improve the overall
performance of diagnostic tools to automatically detect PCa. In
the existing literature, only a few studies have investigated
“radiophenotypes” to complement existing validated clinical
and genomic risk stratification biomarkers [77-79].

In this scenario, a typical ML postprocessing pipeline for
radiomic and genomic analysis to automatically detect PCa may
be constituted of a few crucial steps. In the case of radiomic
studies, a common pipeline may be constituted of (1)
examination of mpMRI; (2) image segmentation through the
delineation of ROIs or VOIs, which can include whole gland
volume, a specific zone, and one or multiple lesions, which
should be explicitly specified in the manuscript; (3) image
preprocessing; (4) filtering; (5) feature extraction; (6) integration
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of radiomic data with clinical data, genomic data, or both; (7)
feature selection in relation to the target class; and (8) algorithm
training, validation, and testing. Alternatively, a DL approach
would only require the examination of the images and annotation
of the ROIs or VOIs of the whole image, according to the
desired classification output.

The image processing pipeline should be carefully described in
the manuscripts, and the spatial coregistration of DWIs is a
critical factor in the correct analysis of diffusion tensor imaging
data, which has often been used as a predictor of PCa diagnosis.
Moreover, the use of endorectal coil can cause high deformation
of the prostate compared with other coils and may not provide
adequate MR image quality [80]. Therefore, further processing
of the images should also be considered, especially when the
study is multicenter and different protocols have been adopted.

Due to the high heterogeneity of genomic studies, a standard
pipeline configuration could be structured into (1) missing value
management; (2) filtering to remove low-variance features; (3)
data normalization due to data coming from heterogeneous
formats; (4) a feature selection step to remove irrelevant features
due to the high dimension of data; (5) dealing with class
imbalance distribution present in this type of large-scale data
set; and (6) algorithm training, validation, and testing.
Alternatively, a DL approach would handle filtering and feature
selection to generate handcrafted features. Deep learning is a
powerful tool to integrate different “omics” and increase the
computational power of diagnostic tools.

Further general recommendations on how to avoid bias and
pitfalls in applying ML to medical problems are as follows: (1)
in the case of multicenter studies, it is recommended to use
batch effect approaches to prevent any bias due to different
study protocols and feature normalization procedures to reduce
within-subject bias [81]; and (2) for classifier performance, it
is necessary to report if any threshold has been used to identify
sensitivity and specificity and whether the performance was
reported on patient-based or lesion-based data sets.

Limitations
Our study presents several limitations. Some variability still
remains due to the actual thresholds between studies. However,
the multiple hierarchical model accounts for between- and

within-subject variability among studies, including threshold
effects. Another factor that could have affected the heterogeneity
among studies is the use of different predictors among radiomic
and genomic studies. Moreover, several studies reported little
or incomplete information on the parameters used to develop
ML models. Therefore, the number of parameters that are
estimated by each technique was not investigated as a possible
source of heterogeneity among studies. Additional heterogeneity
in the observed results is due to the variability of calibration
differences between equipment and differences between readers
or observers, as well as variation in the implementation of tests.
Another possible bias may be due to the preprocessing
techniques on the extracted data and feature selection and feature
normalization methods.

We limited the search to English-only studies; although this is
common in systematic reviews, this exclusion criterion could
have reduced the generalizability of the findings. However, the
extent and effects of language bias have recently diminished
because of a shift toward publication of studies in English [82].
At this stage, we also excluded PCa risk stratification studies
to reduce bias and heterogeneity among studies, but further
investigation on the use of ML methods to assess risk
stratification biomarkers could give a comparative perspective
on the treatment selection.

Finally, publication bias was not assessed in our analysis, as
there are currently no statistically adequate models in the field
of meta-analysis of diagnostic test accuracy [29].

Conclusion
ML has shown its potential to empower clinicians in the
detection of prostate cancer. The accuracy of ML algorithms
for diagnosis of PCa was considered acceptable, in terms of
heterogeneity, for 12 radiomic studies investigating mpMRI
and 5 genomic studies using urine biomarkers.

However, given the limitations indicated in our study, further
well-designed studies are warranted to extend the potential use
of ML algorithms to clinical settings. Recommendations on the
use of these techniques were also provided to help researchers
to design robust studies aiming to identify radiomic and genomic
biomarkers to detect cancer.
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DCE: dynamic contrast-enhanced
DL: deep learning
DWI: diffusion-weighted imaging
FN: false-negative
FP: false-positive
HSROC: hierarchical summary receiver operating characteristic curve
ML: machine learning
mpMRI: multiparametric magnetic resonance imaging
PCa: prostate cancer
PI-RADS-V2: Prostate Imaging Reporting and Data System
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSA: prostate-specific antigen
QUADAS-2: quality assessment of diagnostic accuracy studies–version 2
ROI: region of interest
SMOTE: synthetic minority oversampling technique
TN: true-negative
TP: true-positive
TRUS: transrectal ultrasonography
TZ: transition zone
VOI: volume of interest
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