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A B S T R A C T

Pneumonia is a leading cause of mortality in limited resource settings (LRS), which are

common in low- and middle-income countries (LMICs). Accurate referrals can reduce the

devastating impact of pneumonia, especially in LRS. Discriminating pneumonia from other

respiratory conditions based only on symptoms is a major challenge. Machine learning has

shown promise in overcoming the diagnostic difficulties of pneumonia (i.e., low specificity

of symptoms, lack of accessible diagnostic tests and varied clinical presentation). Many sci-

entific papers are now focusing on deep-learningmethods applied to clinical images, which

is unaffordable for initial patient referral in LMICs. The current study used a dataset of 4500

patients (1500 patients affected by bronchitis, 3000 by pneumonia) from a middle-income

country, containing information on subject population characteristics, symptoms and lab-

oratory test results. Manual feature selection was performed, focusing on clinical symp-

toms that are easily measurable in LRS and in community settings. Three common

machine learning methods were tested and compared: logistic regression; decision tree

and support vector machine. Models were developed through a holdout process of

training-validation and testing. We focused on six clinically relevant, easily interpreted

patient symptoms as best indicators for pneumonia. Our final model was a decision tree,

achieving an AUC of 93%, with the advantage of being fully intelligible and easily inter-
ineering of
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preted. The performance achieved suggested that intelligible machine learning models can

enhance symptom-based referral of pneumonia in LRS and in community settings.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics
and Biomedical Engineering of the Polish Academy of Sciences. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Pneumonia has a devastating impact on global health and is

the largest cause of death due to infection in children world-

wide [1]. Although cases of pneumonia are found globally, the

disease burden falls heavily in low- and middle income coun-

tries (LMICs), with around 90% of the global child mortality

due to pneumonia and diarrhoea occurring in sub-Saharan

Africa and South Asia [2]. Characteristics of individuals living

in LMICs, such as malnutrition and exposure to air pollution,

have long been understood to increase susceptibility to severe

pneumonia [3]. Further to this, the access to appropriate

treatment can be problematic in many LMICs, further increas-

ing pneumonia fatalities. Fundamental to reducing deaths is

rapid identification of the most appropriate treatment for

pneumonia, as recognised in the 2015 Global Action Plan for

the Prevention and Control of Pneumonia and Diarrhoea

(GAPPD) [2], which calls for an end to preventable child deaths

from pneumonia by 2025.

Once the patient is referred to specialised hospitals with

suspected pneumonia, a confirmed diagnosis requires instru-

mental diagnostic tests (e.g., X-ray, pulse oximetry, blood

tests and sputum tests), often integrated with more advanced

investigations (e.g., CT scan, arterial blood gas tests, pleural

fluid culture and bronchoscopy) [4,5]. Those tests and investi-

gations are costly and not widely available in LMIC commu-

nity settings, especially in rural areas. Unfortunately,

pneumonia signs and symptoms are common to many other

respiratory diseases (e.g., bronchitis), resulting in incorrect or

delayed referrals. In fact, pneumonia signs and symptoms

include cough (often with mucus and blood production), dys-

pnoea, fever, sweating, chest pain, loss of appetite, fatigue,

nausea and vomiting (sometimes with mucus and blood)

and confusion, especially in senior patients.

Accurate and timely pneumonia referral is crucial, espe-

cially in limited resource settings (LRS), which are abundant

in LMICs [6]. The meaning of LRS may differ depending on

the context [7], here LRS are taken to describe a healthcare

setting experiencing a lack of either physical or organiza-

tional infrastructure, such as trained personal, facilities or

equipment [6]. The COVID-19 pandemic demonstrated that

appropriate referral of pneumonia is crucial also in high-

income countries during a disaster, such as a pandemic [8].

For instance, the number of papers retrieved in PubMed com-

bining the keywords ‘‘pneumonia” and ‘‘referral” moved from

approximately 13 papers per month in 2019 to 90 papers per

month in 2020 and 136 papers per month in 2021 until March

(search query ‘‘(referral) AND (pneumonia)” in PubMed; search

date 6th of April 2021).
The availability of large datasets and the need for highly

accurate and timely referral and detection of diseases are

motivating the use of data-driven machine learning (ML)

methods in the field [9-11]. ML and deep learning methods

have gained much attention in recent years for the automatic

detection of pneumonia through imaging, in particular

through analysis of chest X-ray or computed tomography

(CT) [12-20]. The onset of COVID-19 and the subsequent global

pressure on healthcare systems has further driven research in

this area [21-24]. Such techniques are an attractive way to

reduce the pressure on healthcare services with limited med-

ical resources and staff, by providing fast and accurate diag-

nosis, reducing demand on equipment and expertise.

Important considerations for use in LRS are speed of classifi-

cation and minimal user input and energy requirements [12].

Although these methods are crucial for diagnosing pneumo-

nia in a hospital setting, it is important to also consider that

barriers exist in LMICs, which delay the diagnosis of pneumo-

nia. In this regard, it is crucial to also support disease referrals

in community settings, where symptoms alone can be

assessed. In fact, it is widely accepted that identification

and management of pneumonia in community settings sig-

nificantly reduces deaths [25]. Healthcare services in LMICs

strongly rely on community health workers (CHWs), espe-

cially in rural areas where there is inconsistent access to spe-

cialised doctors or hospitals [26]. Evidence suggested that

Rapid Diagnostic Tests (RDTs) may support CHWs in detecting

pneumonia in community settings [27,28]. Such an approach

has proved promising in increasing quality of care and

improving diagnosis and treatment availability especially in

LRS [29], where patients may gain access to diagnostic sys-

tems using widely available technology such as smart phones

[30]. Yet, there is a clear gap in interpreting pneumonia symp-

toms, which may be bridged through integration of RDTs and

smart phones with ML, especially in community settings.

This remains challenging due to the similarity of pneumonia

symptoms with those of other respiratory diseases, such as

bronchitis. In fact, different lower-respiratory-tract diseases

tend to present with an overlapping set of symptoms, in this

way it may be difficult to manually identify patterns and fea-

tures in data, making it another appropriate challenge to be

faced with ML. Unfortunately, this problem has not been well

investigated. In fact, from the existing literature, it can be

found that use of traditional ML for lower-respiratory-

disease recognition based on symptoms is relatively scarce.

This is limiting the potential for implementation of ML mod-

els in clinical analysis, which could improve the diagnostic

capability of existing Computer-Aided Design (CAD) systems

to automatically detect diseases such as pneumonia [31].
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Fig. 1 – A workflow of all major steps taken in this work.

Initially raw data was cleaned i.e., to deal with missing data

and analyse outliers. Statistical analysis was performed to

evaluate possible heterogeneity of population

characteristics and variable distribution between patient

groups. Initial manual feature choice on the clean dataset

was completed before data splitting into separate folders.

Feature selection was done by using backwards feature

selection during the ML model training and validation.

Model testing was performed on Folder 2. Finally,

performance of the models on the test data folder was

evaluated using several metrics recommended by the

literature.
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Overlapping symptoms represent a significant barrier for

pneumonia referral, especially when resources and expertise

are not widely available such as in LMICs and LRS. Correct

referral holds the key to the most effective diagnosis, treat-

ment and management [32]. In particular, pneumonia and

bronchitis have many similar symptoms, affecting patients’

referral. Indeed, where pneumonia refers to the presence of

fluid in the alveoli, bronchitis is characterized by acute

inflammation of the trachea and airways. Bronchitis most

commonly results from viral infection, therefore, treatment

with antibiotics is not generally effective, whereas for pneu-

monia the situation is reversed, providing strong motivation

for correct referrals [17,33].

Several studies have achieved promising performance in

classification of pneumonia [34-43] and other respiratory dis-

ease such as Chronic Obstructive Pulmonary Disease (COPD)

and asthma [44-46] using ML with symptomatic predictors

in combination with laboratory test results. However, there

has been relatively little investigation of models using purely

symptoms and signs as predictors [47,48], which, given the

restraints upon healthcare at the community level, highlights

a shortfall of research in this area. Furthermore, several

issues in the field are apparent: reports do not provide a

strong evidence base for their models, there is a lack of clarity

in reporting of ML methods and the issue of distinguishing

pneumonia from other similarly presenting respiratory dis-

eases is not addressed in the existing literature.

Therefore, this study aimed to design an evidence based

and interpretable ML model, using easily recognized

symptoms and signs as predictors, which can distinguish

between patients with bronchitis and pneumonia. Such a

model is suitable for incorporation into a diagnostic tool, for

the purpose of screening for pneumonia in the

community, with the aim of improving access to referral

and treatment.

2. Materials and methods

The steps completed during this work, beginning with the

raw data and ending with an evaluation of predictive model

performance, are outlined in Fig. 1. Symptomatic features

were manually considered for machine learning in accor-

dance with their clinical relevance and the goals of this study.

A full description of the dataset and further details of each

stage in the analysis are provided in the following sections.

2.1. Dataset

The data used in this work was collected as part of a prospec-

tive study, following internationally accepted medical prac-

tices for diagnosis of Chronic obstructive pulmonary disease

(COPD) and asthma [49,50]. The dataset was generated to be

suitable for design, validation, and real-time testing of a clas-

sifier to automatically identify bronchitis and pneumonia.

Before starting the study, the ethics board approval for human

subject testing from the Hospital Sarajevo was obtained (No.

01-11/EO-06/18), as well as the patients’ informed consent.
Healthcare institutions also approved all methods and proce-

dures which were performed in accordance with the relevant

guidelines and regulations. Samples originate from the period

of October 2017 until December 2018.

Only patients with confirmed diagnosis were included as

subjects in this study. Diagnoses were performed by medical

professionals following clinical assessment according to

international guidelines. Baseline assessments consisted of

screening for patient symptoms using symptom-based ques-

tionnaires or interviews conducted by a medical professional.

All spirometry lung function tests were obtained using the

CareFusion ‘‘Master Screen” device (Hoechberg, Germany),

which measured, derived and calculated all the required

spirometry parameters.

The dataset comprised clinical information on 4500 indi-

viduals either diagnosed with bronchitis (1500) or pneumonia

(3000). Information collected included a range of symptoms

typical of respiratory illness, laboratory test results and vari-

ous population descriptive characteristics such as exposure

to air pollution or malnutrition. This information was estab-

lished by medical professionals. Full description of the vari-

ables extracted are presented in Table 1.



Table 1 – Description of categorical and continuous variables present in dataset with different possible levels where appro-
priate for: multiclass and binary variables.

Sign and symptoms (Multiclass) Description

CURB Clinical prediction rule for mortality in CAP, risk of death after 30 days:
1: 2.7%
2: 6.8%
3: 14.0%
4: 27.8%
5: 27.8%

Auscultation Examination: Listening to circulatory and respiratory systems:
1: Normal
2: Inspiration cracks
3: Pleural friction
4. Enhanced tune noise5: Unsuspecting noise
5: Unsuspecting noise

Sputum On inspection:
1: Mucosal
2: Purulent
3: Haemoptysis

Results of X-ray (RTG) 1: Lobar
2: Segmental
3: Sub-segmental
4: Bronchopneumonia
5: In AIDS
6: Reverse
7: Non-segmental
8: No information

Sign and symptoms (binary)
Associated diseases Did the patient have any other associated diseases (yes or no)
Immunosuppression Was immunosuppression present in patient (yes or no)
Allergy Any allergies present in patient (yes or no)
Exposure to air pollution Was the patient likely to be exposed to air pollution (probable or no)
Malnutrition Did the patient suffer malnutrition
Cough Did the patient have a cough (yes or no)
Expectoration Did the patient have expectoration (yes or no)
Dyspnoea Did the patient have dyspnoea (yes or no)
Pleura Pain Did the patient have pleura pain (yes or no)
Fever Did the patient have a fever (yes or no)
Sweating Did the patient have sweating (yes or no)
Muscle pain Did the patient have muscle pain (yes or no)
Headache Did the patient have a headache (yes or no)
Loss of appetite Did the patient have a loss of appetite (yes or no)

Laboratory test results
Sedimentation Measure of sedimentation of red blood cells.
Fibrinogen Blood coagulation factor
CRP (mg/ml) Indicative of inflammation or infection
Leukocytes Total white blood cell count
Neutrophils Subtype of white blood cell
Lymphocytes Subtype of white blood cell
Monocytes Subtype of white blood cell
Basophils Subtype of white blood cell
Eosinophils Subtype of white blood cell
Spirometry Measure of amount and/or speed of air that can be inhaled and exhaled.

Parameter measured: Volume expelled in one breath relative to expected reference,
Forced Vital Capacity (FVC, %)
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2.2. Statistical analysis

Statistical analysis was used to determine whether there was

homogeneity between patients with pneumonia and bronchi-

tis in terms of age, sex, and population characteristics. Fur-

ther statistical tests were employed to understand the

behavior of variables in terms of their distribution i.e.,

whether continuous variables were normally distributed.

Finally, statistical differences of variables between the two

patient groups were evaluated. Statistical test selection was

informed by best practice guidelines described in the litera-

ture [51] and the methodology of the identified similar studies

[34-42,52].

Features were tested for normality using the Chi-square

goodness of fit test. Continuous variables were expressed as

mean ± standard deviation or median and standard error. A

non-parametric statistical test, Kruskal–Wallis test, was used

for comparison of continuous variables between the two

groups of patients (pneumonia and bronchitis), as it is appro-

priate for variables which are not normally distributed [51].

Categorical variables were expressed as a percentage and

were compared using the Chi-Square, or Fisher Exact tests.

A p-value of <0.05 was considered significant when assessing

the variation of the features among the two patient groups.

Bonferroni’s correction was used for multiple hypothesis cor-

rection if necessary. Correlation analysis was carried out by

Goodman and Kruskal’s tau correlation.

Box and scatter plots were used to identify outliers in con-

tinuous variables. After ensuring that there were no changes

to the data on importing or coding, outliers were quantified as

any value which is more than three scaled absolute devia-

tions from the median [53]. Subjects with outlying continuous

variable values (156 individuals) were removed from the data-

set, leaving 2844 pneumonia and 1500 bronchitis subjects. All

the analyses were run in Matlab2019b.

2.3. Model training, validation, and testing procedure

As shown in Fig. 2, training and validation was performed on

Folder 1 (60% of the total amount of data), and testing was
Fig. 2 – Feature selection, training and testing of machine learnin

machine learning model.
performed on the remaining independent 40 % of data. The

splitting was done in a stratified subject-wise fashion.

Feature Selection. Sufficiently large numbers of subjects

allowed free selection amongst available attributes, comply-

ing with the ’10 events per attribute’ rule of thumb to avoid

overfitting [9,54]. In the event that there were zero occur-

rences of a certain symptom in either class, these symptoms

were discarded due to risk that information was not collected

and to avoid a trivial separation of groups. Initial manual fea-

ture choice was performed on the clean dataset based on clin-

ical relevance. In fact, for a diagnostic and/or screening

application, the features should have some bearing on the

disease [55]. Feature selection, based on the cluster of features

manually selected, was then performed on Folder 1, after data

splitting. Therefore, feature selection and model training

were performed on the same folder [56]. Correlations between

variables was evaluated using Kendall rank correlation test,

with correlating variables not to be included as features. Cor-

related variables were considered as those which had a statis-

tically significant Kendall rank coefficient greater than 0.5

( sj j > 0:5; p < 0:05). Backward feature selection was per-

formed on the training dataset with only the best combina-

tion of features reported on.

Machine Learning Methods. Models automatically classifying

patients as either having bronchitis or pneumonia were

developed using three different machine learning methods:

logistic regression (LR), decision tree and support vector

machine (SVM). LR is an extension of linear regression, which

predicts probability of a case belonging to a certain class [57].

A decision tree creates a set of ‘if-else’ conditions to predict

the class of a given case [58]. SVM, which belongs to a general

field of kernel-based machine learning methods, is used to

efficiently classify both linearly and nonlinearly separable

data [59]. Algorithm parameter tuning was performed during

training and validation. Regarding the final model parame-

ters, a fine tree with maximum splits of 100 was used for

the decision tree, while a linear kernel with a scale of 0.8792

was used for SVM.

Training and validation. The training of the machine-

learning models was performed on the folder 1 (1706 pneu-
gmethods. This diagram shows the workflow to develop the
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monia patients, 900 bronchitis). Folder 1 was further divided

into ten equal sized subsamples, according to the 10- fold

person-independent cross-validation approach. Of these ten

subsamples, nine subsamples were used as training data

and the remaining one was retained for validating the model.

The process was then repeated ten times, with each of the ten

subsamples used exactly once as the validation data. Finally,

the cross-validated estimations were computed by averaging

the performances over the ten validation subsamples. Classi-

fication measures were adopted according to the standard

formulae [60].

Testing. Testing a classifier involves analyzing its perfor-

mance on a set of subjects that is independent from the train-

ing and validation set [61]. Accordingly, folder 2 (1138

pneumonia patients, 600 bronchitis) was used to test the

trained models.

The model performance was obtained for the optimal

operating point on the receiving operating characteristic

(ROC) curve, as calculated by the MATLAB perfcurve function

that relies on a previously described cost-function curve anal-

ysis [62].

Finally, the best performing model was selected as the one

achieving the highest averaged area under curve (AUC), which

is a reliable estimator of both sensitivity and specificity rates.

In case of equal AUC, the model with the highest overall accu-

racy was selected.

3. Results

The clean dataset consisted of a total of 4344 samples, of

which 2844 patients were diagnosed with pneumonia and

the remaining with bronchitis. All continuous features were

not normally distributed, with p-values <0.01. The mean,

median, standard deviation and range of continuous variables

is shown in Table 2. The final column reports the p-value of

the Kruskal-Wallis Test for attribute variations between bron-

chitis and pneumonia subjects. All p-values fell <0.01, this

indicates significant difference for all attributes between

bronchitis and pneumonia.

The counts and proportions of the categorical variables

between pneumonia and bronchitis groups is presented in
Table 2 – Continuous variable statistics across bronchitis and p

Variable Bronchitis

Mean Median SD Range

Age 53.04 52 27.08 93.00
Sedimentation 15.39 15.62 8.70 29.92
Fibrinogen 348.59 343.32 199.21 698.11
CRP (mg/ml) 24.53 25.07 14.52 49.89
Leukocytes 27.00 27.03 13.10 45.96
Neutrophils 11.01 11.08 5.38 18.19
Lymphocytes 5.42 5.34 2.67 9.20
Monocytes 1.90 1.91 0.64 2.20
Basophils 0.15 0.15 0.09 0.30
Eosinophils 1.00 1 0.58 2.00
Spirometry 65.34 65.485 8.92 30.96

Mean, median, standard deviation (SD) and range are reported for pneum

outcome of the Kruskal–Wallis test for variation between pneumonia an
Table 3. The final column reports the resulting p-value of

the Chi-square (multi-class attributes) and Fisher Exact (bi-

nary attributes) Tests. Several symptoms were either not reg-

istered during data collection or not experienced by

bronchitis sufferers: fever, sweating, muscle pain, headache

and loss of appetite. Such attributes were discarded as the

clear distinction does not provide an appropriate machine

learning problem. Further, there may have been differences

in data collection between groups for these symptoms. Age

above 65 years old, auscultation, sputum and RTG showed

to be statistically different with a p-value less than 0.01

between bronchitis and pneumonia cases.

Kendal rank correlation analysis between symptoms

(cough, expectoration, dyspnoea, pleura pain, auscultation

and sputum) and population descriptive variables (Above 65,

associated chronic bronchopulmonary, immunosuppression,

allergy, exposure to air pollution) found no correlations. Back-

wards feature selection found that including all the six above

symptoms granted the best model performance. Population

descriptive variables did not improve performance so were

discarded in order to reduce the complexity of the model.

Therefore, the final selected features were: cough, expectora-

tion, dyspnoea, pleura pain, auscultation and sputum. Results

of the three different ML methods are reported in Table 4.

Although AUC are similar across the three methods, the

model considered most successful and suitable was the deci-

sion tree. This is due to its superior overall accuracy over both

LR and SVM. Furthermore, decision tree granted the fastest

execution time to accurately predict pneumonia.

The ROC curves for the final models are shown in Fig. 3.

4. Discussion

This study proposes an easily interpreted, tree-based model

for the automatic classification of pneumonia from bronchitis

based entirely on easily measurable symptoms and signs.

Features were selected based on their clinical relevance and

availability on patient assessment. The manual feature selec-

tion method employed permitted a clear focus on the clinical

utility and application of the model. Some key criteria used

were: i) measurable in a point of care setting [63]; ii) parame-
neumonia groups.

Pneumonia

Mean Median SD Range p-value

38.29 36 23.28 100 <0.001
57.78 58 25.11 85 <0.001

706.98 706 173.51 600 <0.001
105.64 106 55.38 190 <0.001
300.19 294.75 168.49 586.4 <0.001
105.76 105.395 52.48 188.86 <0.001
53.15 53.355 27.46 95.45 <0.001
2.98 2.945 1.17 4 <0.001
0.60 0.6 0.23 0.8 <0.001
3.50 3.52 1.44 5 <0.001

57.62 57.87 10.09 34.98 <0.001

onia and bronchitis groups. The p-value reported corresponds to the

d bronchitis groups.



Table 3 – Categorical variable counts and percentages across pneumonia and bronchitis classes.

Variable Bronchitis Count (%) Pneumonia Count (%) p-value

Sex (Female) 764 (50.93) 1398 (49.16) 0.28
Age Above 65 543 (36.20) 417 (14.66) <0.001
Bronchopulmonary chronic Disease present 774 (51.60) 1425 (50.11) 0.35
Other Associated diseases 726 (48.40) 1476 (51.90) 0.03
Immunosuppression 741 (49.40) 1419 (49.89) 0.77
Allergy 769 (51.27) 1397 (49.12) 0.18
Probable exposure to air pollution 713 (47.53) 1440 (50.63) 0.06
Malnutrition 768 (51.20) 1416 (49.79) 0.39
Cough 775 (51.67) 1432 (50.35) 0.42
Expectoration 736 (49.07) 1405 (49.40) 0.85
Dyspnoea 765 (51.00) 1417 (49.82) 0.46
Pleura Pain 764 (50.93) 1428 (50.21) 0.66

Auscultation <0.001
Auscultation 1 377 (25.13) 580 (580 20.39)
Auscultation 2 370 (24.67) 527 (18.53)
Auscultation 3 360 (24.00) 551 (19.37)
Auscultation 4 393 (26.20) 592 (20.82)
Auscultation 5 0 (0) 594 (20.89)

Sputum <0.001
Sputum 1 766 (51.07) 897 (31.54)
Sputum 2 734 (48.93) 977 (34.35)
Sputum 3 0 (0) 970 (34.11)

RTG <0.001
RTG 1 734 (48.93) 347 (12.20)
RTG 2 766 (51.07) 359 (12.62)
RTG 3 0 (0) 347 (12.20)
RTG 4 0 (0) 385 (13.54)
RTG 5 0 (0) 363 (12.76)
RTG 6 0 (0) 357 (12.55)
RTG 7 0 (0) 358 (12.59)
RTG 8 0 (0) 328 (11.53)

The p-value corresponds to the outcome of the chi-square or Fisher Exact tests for variation between pneumonia and bronchitis groups).
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ters frequently investigated [64]; iii) ease of availability [65]

and iv) reliability [34].

The results showed that by using a set of symptoms such

as cough, expectoration, dyspnoea, pleura pain, auscultation

and sputum, the model correctly identified more than 80%

of patients with confirmed diagnosis of pneumonia. Although

cough, expectoration, dyspnoea and pleura pain were not

found to be statistically different among the two classes of

respiratory diseases, the combination of those variables with

auscultation and sputum signs achieved significant results to

automatically distinguish patients affected by pneumonia

from those with bronchitis. These results suggested that it

was possible to correctly distinguish patients presenting with

bronchitis or pneumonia, before performing clinical tests

(e.g., X-ray), which required extensive expertise or advanced

equipment. This can be crucial for patient referrals in com-

munity settings, especially in LRS. In fact, a set of predictors,

which are easily recognised by CHWs or even self-reported

and an automated ML model, which is suitable for incorpora-

tion into a tool such as an APP for use via mobile phones,

would have great value in assisting referrals of pneumonia

in LMICs. Moreover, in high income settings such a tool may

complement traditional community healthcare services by

providing widely available digital tests through apps for
triage. The global need for such technology has been brought

to the forefront of healthcare concerns in particular during

outbreaks of COVID-19.

Although symptoms of bronchitis and pneumonia are sim-

ilar, as discussed in the introduction, the required treatment

is very different. First line treatment for pneumonia generally

comprises antibiotic administration with close monitoring,

while acute bronchitis is self-limiting and does not benefit

from antibiotic treatment [35]. Therefore, there is a high cost

to patient outcomes when these conditions are misdiagnosed

or poorly referred, an easy-to-use tool capable of distinguish-

ing the symptoms of these diseases is desirable.

The use of the symptoms identified in this study is largely

supported by their identification as predictors of pneumonia

by several authors in the literature, using different data and

a variety feature selection methodology. The most commonly

employed predictor from the literature is the outcome of aus-

cultation, of which fast breathing specifically is strongly asso-

ciated with pneumonia [34,36,40-42]. Cough [40,48] and

productive cough/expectoration [36] were also found in sev-

eral previous studies, as well as pleura pain [36,40] and dysp-

noea [36,40,66]. Interestingly we were unable to identify any

use of sputum evaluation in ML classifiers of pneumonia

in the literature, which indeed in this study was found to be
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statistically different among bronchitis and pneumonia

classes. This may reflect difference in clinical practices in dif-

ferent regions.

Three ML methods: SVM; decision tree and LR, were

employed to facilitate comparison among commonly used

models for clinical classification problems with varying inter-

pretability. The selection was motivated by a desire to repre-

sent and compare methods which are frequently employed

in the literature for similar problems, in particular between

interpretable models. Comparison of performance between

existing studies is limited for several reasons: variation in

pneumonia reference standard; variation in subject popula-

tion and lack of standardized reporting of ML methods and

performance. The state-of-the-art studies to detect pneumo-

nia and/or COVID-19 Pneumonia are reported in Table 5. Of

the existing studies in the literature which utilized SVMs

[35,39,67], only one specified distinguishing pneumonia from

other diseases (as oppose to healthy patients). In this report

from Rother et al. 2015 [67], the authors reported a program

consisting of eight classifiers, with a sensitivity of 90% being

the only performance parameter reported. Perhaps due to it

is simplicity, LR has also proved a popular choice, Feng et al.

2020 [52] reported a high sensitivity of 100% with a specificity

of 78% and AUC of 93%when identifying COVD-19 pneumonia

based on symptoms and blood test results. Classification and

Regression Trees (CARTs) were used by De Santis et al. 2017

[42] (sensitivity of 38%, specificity of 97%) and Steurer et al.

2011 [40] (AUC of 90%) to classify pneumonia, however the lat-

ter failed to use any internal or external validation tech-

niques. Therefore, further analysis of the chosen methods

in relation to detection of pneumonia was required. The

results reported here support the use of simple, interpretable

models such as LR and decision tree, which were shown to

perform as well as or indeed better than linear SVM.

The tree-based model, which was considered most favour-

able for use in a clinical tool due to being easily understood,

was found to give the best performance with an AUC of

93%. In comparison, in 2018 Pervaiz et al. found the WHO

pneumonia symptomatic predictors for childhood pneumo-

nia: cough; difficulty breathing, fever, tachypnoea and chest

indrawing, to achieve an AUC of only 62% [36,47]. Reports of

models built using symptoms/signs alone are relatively rare

[42,67,68]. Nuzhat et al. reported high sensitivity and speci-

ficity (94%, 99%) in a logistic regression model using cough

and lower chest wall indrawing as predictors, however the

methodology lacked internal or external validation [68].

Rother et al. utilized an ensemble method, achieving a sensi-

tivity of 90%, in this case with the disadvantage of an uninter-

pretable final model [67]. More common has been to include

additional laboratory or clinical tests as predictors

[34,37,40,41,69,70], however, such techniques are costly, time

consuming and require specialist training, so would be

unavailable in low resource settings. Other studies in the lit-

erature have focused on employing image-based classifica-

tion to diagnosis pneumonia, in particular relating to

detecting cases of COVID-19 (Table 5). When the patients are

referred to hospital for suspected pneumonia, instrumental

investigations are certainly needed, including X-ray imaging.

In this case, image classification is most often approached

through deep learning methods and achieved high



Fig. 3 – ROC curves for tested models. Panel (A) Logistic Regression; (B) Decision Tree; (C) Linear Support Vector Machine. All

curves are reported based on test dataset which was held out from training.
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performance; with the majority of methods reporting perfor-

mance metrics above 90% (accuracy or AUC) [14,19-24]. For

instance, Li et al. reported an AUC of 95% for detecting CAP

from pulmonary CT scans [22], and Yue et al. achieved an

accuracy of over 90% for pneumonia detection in five different

convolutional neural networks (CNNs) using chest X-ray

images [14]. Whereas, Wang et al. [16] and Stephen at al.

[12] used a CNN-based model via chest X-ray images to detect

pneumonia from other medical conditions and/or healthy

patients by achieving higher performance than Sirazitdinov

et al. [13], that used an ensemble of two convolutional neural

networks for pneumonia localization from a large-scale chest

X-ray database. Another study [19] by Nahid et al. employed a

CNN model by also using chest X-ray images to detect

patients affected by pneumonia achieving over 97% accuracy.

A recent study by Musad et al. [18] employed radiomic fea-

tures extracted from chest X-ray images via a CNN method

which were then inputted to more traditional machine learn-

ing algorithms such as Random Forest Tree. However, they

achieved a lower classification accuracy (86.3%) to discrimi-

nate among healthy, bacterial pneumonia and viral pneumo-

nia categories. CNN was, in fact, often selected among the

studies reported in Table 5 to automatically detect viral pneu-

monia via imaging techniques. Only one study by Srivastava

et al. [20] applied CNN methodologies to assist medical

experts by providing a detailed and rigorous analysis of the

medical respiratory audio data for Chronic Obstructive Pul-

monary detection.

In order to reduce the time and complexity of developing

novel models from scratch, transfer learning has proved a

promising fast route to building high performance deep learn-

ing models. In particular regarding rapid development of

COVID-19 detection models, Hira et al. [21], Elgendi et al.

[23] and Brunese et al. [24] achieved an accuracy of 97.5%,

94% and 97% respectively, in detecting pneumonia from chest

X-rays using pre-trained models.

However, despite performing well on existing data, the

deep learning methods used in these studies are less prone

to be adopted in clinical settings due to low reliability and

trustfulness. Moreover, the studies employing imaging tech-

niques as predictors aimed to develop a diagnostic model,

whereas in this study we aimed at developing a classifier that

would have great value in assisting referrals of pneumonia,
especially in LMICs. In fact, we presented a fully interpretable,

tree-based model taking symptoms and signs as inputs, that

can distinguish pneumonia patients with a similar perfor-

mance (above 90%) to image-based deep learning approaches.

Nevertheless, the high performance seen from these very

different ML approaches at both the initial patient referral

(based on symptoms) and hospital confirmation (based on

instrumental investigation through image analysis) high-

lighted the varied and exciting promise of AI for both referral

and diagnosis of pneumonia, which may contribute to allevi-

ating pressures on clinical staff and equipment especially in

LRS of LMICs. Most importantly, early symptomatic discrimi-

nation of pneumonia from bronchitis may avoid unnecessary

antibiotic treatments, helping to limit antibiotic resistance

and avoiding the onset of pneumonia complications that

may compromise patient treatment.

Among the studies aiming to develop tools for screening

and/or diagnosis of respiratory disease such as pneumonia,

bronchitis, asthma and COPD [44,45], the vast majority used

additional laboratory test results such as white blood cell

counts and sedimentation as well as symptoms. In practice,

carrying out such tests requires a high level of expertise and

costly facilities. Such requirements are not only challenging

in LRS, but also take time, therefore are not an ideal basis

for wide screening tools for rural areas in LMICs. Moreover,

Pervaiz et al. found no benefit to adding oxyhaemoglobin

levels to a ML model based on signs and symptoms alone to

predict radiographically confirmed pneumonia in children.

Furthermore, Naydenova et al. and Groeneveld et al. find that

addition of patient C-Reactive Protein (CRP) levels to models

based on symptoms, vital signs and age worsened perfor-

mance in classification of pneumonia. This falls into a wider

picture in which there is currently contention regarding the

use of biomarkers such as CRP or Procalcitonin (PCT) as indi-

cators for pneumonia [37,71], further research into their rele-

vance, in particular in LMICs, is necessary to justify their use

as predictors in diagnostic tools.

As well as demonstrating promising performance on exist-

ing data from a middle-income country, the model proposed

has the advantage of being easily interpreted. Such explain-

able AI models have several benefits, which increases their

clinical utility: trust in the system, guarding against bias,

passing regulatory requirements, verifying outputs and



Table 5 – State-of-the-art studies to detect pneumonia.

Studies focused on signs and symptoms

Author, Year Final Predictors Outcomes (Classes) ML method and development
(training, validation and/testing)

Performance
estimates

Pervaiz et al., 2018 [47] WHO criteria Pneumonia; Acute respiratory
illness

Logistic regression AUC: 62%

Groeneveld et al., 2019 [75] Runny nose absent; Feel ill; CRP
concentration

Pneumonia; Healthy Logistic regression AUC: 75%

Nuzhat et al., 2017 [68] Cough and lower chest wall
indrawing combined

Pneumonia; Healthy Logistic regression SEN: 94%
SPE: 99%

Naydenova et al., 2016 [76] Respiratory rate; Heart rate;
Temperature; Oxygen
saturation; Age

Pneumonia; Healthy Random Forest. Fivefold cross
validation, data split for training and
testing

ACC: 95.9%
AUC: 99.7%

Grigull et al., 2012 [35] 14 clinical factors and vital
signs including: age,
temperature, blood pressure,
etc.;12 laboratory parameters
including:
haemoglobin, leukocyte count,
CRP level, etc.

Pneumonia; Other diseases Voting algorithm using SVM, aNN and
fuzzy logic

AUC: 99%

Steurer et al., 2011 [40] Chronic cough; Daily fever;
Dyspnoea; Respiratory rate;
Pleural friction rub; CRP
concentration

Pneumonia; No pneumonia CART, leave-one-out cross validation AUC: 90%

Rother et al., 2015 [77] Included symptoms such as:
Whistling/wheezing sounds
and drowsy

Pneumonia; Other diseases Program consisting of eight classifiers:
SVM, ANN, fuzzy rule-based, random
forest, LR, linear discriminant analysis,
naı̈ve Bayes, nearest neighbour,
ensemble

SEN: 90%

van Vugt et al., 2013 [78] Absence of runny nose;
Breathlessness; Crackles;
Diminishing breath sounds on
auscultation; Tachycardia;
Fever; CRP

Pneumonia; No pneumonia Multilevel logistic regression,
bootstrapping for internal validation

AUC: 77%

De Santis et al., 2017 [79] Abnormal chest auscultation Pneumonia; Other diseases CART SEN: 38%
SPE: 97%

Feng et al., 2020 [69] Combination of symptoms and
signs (age, heart rate, fever,
shiver, shortness of breath) and
lab tests

COVID-19 pneumonia;
Suspected COVID-19
pneumonia

Logistic regression (LASSO). Data split
for training and testing

AUC: 93%
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Table 5 – (continued)

tudies focused on signs and symptoms

uthor, Year Final Predictors Outcomes (Classes) ML method and development
(training, validation and/testing)

Performance
estimates

eLisle et al., 2013 [70] Text from clinical notes and
imaging report notes

Pneumonia; No
pneumonia

Random fields probabilistic classifier SEN: 58–75%

tudies focused on imaging
ira et al., 2020 [21] Chest X-rays COVID-19; Viral

pneumonia; Bacterial
pneumonia; Healthy

Deep transfer learning, pre-trained
models. Nine convolutional neural
network-based architectures: AlexNet,
GoogleNet, ResNet-50, Se-ResNet-50,
DenseNet121, Inception V4, Inception
ResNet V2, ResNeXt-50, and Se-
ResNeXt-50

ACC: 99.32% (binary)
ACC: 97.55% (multi-
class)

i et al., 2020 [22] Volumetric (3D) chest CT scans COVID-19; Community-
acquired pneumonia;
Non-pneumonia
abnormalities

COVNet deep learning framework:
based on RestNet50. Training on 90%,
testing on 10% of data

AUC: 95%

runese et al., 2020 [24] Chest X-rays COVID-19; Pneumonia;
Pulmonary diseases;
Healthy

Deep transfer learning, network based
on VGG-16 (Visual Geometry Group
model). Data split: training, testing and
evaluation sets

ACC: 97%

lgendi et al., 2020 [23] Chest X-rays COVID-19; Viral
pneumonia; Bacterial
pneumonia

Pre-existing neural network DarkNet-
19. Data split: training 80%, validation
20%

ACC: 94.28%

ue et al., 2020 [14] Chest X-rays Pneumonia; Healthy Deep learning models, MobileNet (3 � 3
depthwise separable convolutions).
Data split for training and testing

ACC: 92.9%

irazitdinov et al., 2019 [13] Chest X-rays Normal; No lung
opacity/not Normal;
Lung opacity

Ensemble of two convolutional neural
networks, RetinaNet and Mask R-CNN.
Data split for training and testing,
training set further split (90% training,
10% validation)

SEN: 79.3%
SPE: 75.8%

ang et al., 2019 [16] Chest X-rays No pneumonia;
Pneumonia; Other
medical conditions

Deep learning, Cooperative CNN.
Data split for training (95%) and testing
(5%)

SEN: 89.04%
SPE: 78.53%

tephen et al., 2019 [12] Chest X-rays Pneumonia; Healthy CNN. Data split for training, testing and
validation

ACC: 93.73%

alsh et al., 2018 [15] CT scans Fibrotic lung disease;
Normal

Neural network Inception-ResNet-v2.16
algorithm. Data split for training,
testing and validation

ACC: 76.4%
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assessing risk [72]. Indeed, the importance of explainability in

AI is not limited to symptom-based classifiers but extends

also into the field of image analysis. This is challenging for

deep learning, where it is not easy to follow the ‘decision

making’ process leading to the final classification, unless

specific tools for visualization of data significance are

employed [73,74]. In fact, there is evidence in the literature

of predictive deep learning models which are able to indicate

the areas of a chest X-ray which contributed most to disease

detection, which allows rapid identification of areas of inter-

est to a radiologist in a hospital setting [24].

The work detailed here is a proof of concept that a simple,

evidence-based ML model has the potential to perform well

using symptoms and signs alone as predictors. However, this

study comes with certain limitations. Firstly, the data driving

this work was collected in a European middle-income coun-

try, therefore, may be of limited utility in populations of

low-income countries (e.g., Sub-Saharan Africa), which

indeed experience the greatest burden from pneumonia. In

fact, pneumonia in Europe and pneumonia in Sub-Saharan

Africa may have different causes (e.g., ageing and pollution

vs Saharan desert dust), which may result in different symp-

toms. Furthermore, training of CHWs in low-income settings

in auscultation, spirometry or sputum evaluation may not be

easy, indeed equipment and expertise may not be available in

emergency rooms even in high-income regions. Whilst the

ML model reported in this study has the advantage of dis-

criminating pneumonia from bronchitis, determining of the

underlying pathogenesis and severity of pneumonia was

beyond the scope of this study. This will be an interesting

future avenue of research, as this information would be

highly valuable in identifying the best treatment for pneumo-

nia patients on an individual basis. Finally, in order to pro-

duce a clinical tool, it would be necessary to incorporate all

commonly presenting respiratory diseases, not only bronchi-

tis and pneumonia.

5. Conclusions

Correct referral and diagnosis of pneumonia is challenging

due to low specificity of symptoms, lack of widely available

diagnostic tests and varied clinical presentation amongst sub-

populations. In this study, we applied machine learning algo-

rithms to a dataset of 4344 patients (1500 bronchitis, 2844

pneumonia) containing information on subject population

characteristics, symptoms and laboratory test results. Feature

selection found 6 clinically relevant and easily interpreted

patient symptoms to be the best predictors of pneumonia in

this dataset. The best performing model that was able to dis-

tinguish pneumonia from bronchitis via sign and symptoms

was a decision tree, which achieved an AUC of 93%. The

robust, evidence-based design and ability to use symptoms

to distinguish pneumonia from a similar respiratory disease

(i.e., bronchitis) grants advantage for application in LMICs,

compared to previously reported models relying mainly on

instrumental tests and X-ray images. To be of most practical

use in resource limited settings, machine learning models

aiming at supporting disease screening, early diagnosis and

appropriate referral, must provide thorough reporting of
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methodology and performance and place emphasis on easily

evaluated attributes such as presenting clinical signs and

symptoms.
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