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A B S T R A C T   

Artificial Intelligence (AI) systems using symptoms/signs to detect respiratory diseases may improve diagnosis 
especially in limited resource settings. Heterogeneity in such AI systems creates an ongoing need to analyse 
performance to inform future research. This systematic literature review aimed to investigate performance and 
reporting of diagnostic AI systems using machine learning (ML) for pneumonia detection based on symptoms and 
signs, and to provide recommendations on best practices for designing and implementing predictive ML algo
rithms. This article was conducted following the PRISMA protocol, 876 articles were identified by searching 
PubMed, Scopus, and OvidSP databases (last search 5th May 2021). For inclusion, studies must have differen
tiated clinically diagnosed pneumonia from controls or other diseases using AI. Risk of Bias was evaluated using 
The STARD 2015 tool. Information was extracted from 16 included studies regarding study characteristics, ML- 
model features, reference tests, study population, accuracy measures and ethical aspects. All included studies 
were highly heterogenous concerning the study design, setting of diagnosis, study population and ML algorithm. 
Study reporting quality in methodology and results was low. Ethical issues surrounding design and imple
mentation of the AI algorithms were not well explored. Although no single performance measure was used in all 
studies, most reported an accuracy measure over 90%. There is strong evidence to support further investigations 
of ML to automatically detect pneumonia based on easily recognisable symptoms and signs. To help improve the 
efficacy of future research, recommendations for designing and implementing AI tools based on the findings of 
this study are provided.   

1. Introduction 

Pneumonia is a form of acute lower respiratory infection. Pneumonia 
is generally characterized by specific symptoms such as fever, chills, 
cough with sputum production, chest pain and shortness of breath [1]. 
Many factors affect how serious pneumonia is, such as the type of 
pathogen causing the lung infection, age, and overall health status. 
Pneumonia tends to be more serious for children under the age of five, 
adults over the age of 65, people with certain conditions such as heart 
failure, diabetes, or COPD (chronic obstructive pulmonary disease), or 

people who have weak immune systems due to HIV/AIDS, chemo
therapy (a treatment for cancer), or organ or blood and marrow stem cell 
transplant procedures [2]. 

When an individual has pneumonia, the alveoli, small sacs within the 
lungs, are filled with pus and fluid, which makes breathing painful and 
limits oxygen exchange [3]. There are more than 30 different causes of 
pneumonia, and they are grouped accordingly: bacterial pneumonia, 
viral pneumonia, mycoplasma pneumonia and other pneumonias. 
Moreover, pneumonias can be also categorized as community-acquired 
(CAP), hospital-acquired (HAP) (excluding ventilator-associated [4], 
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which occurs in immunocompromised patients such as patients with 
human immunodeficiency virus (HIV) infection (see Pneumocystis jir
ovecii Pneumonia [5], or aspiration pneumonia, which occurs when 
large volumes of upper airway or gastric secretions enter into the lungs 
[6–9]. 

An accurate definition and diagnosis of pneumonia is contentious for 
several reasons [2]: low specificity of symptoms of lower respiratory 
tract infections; difficulty in identifying the underlying pathogen in in
dividuals and lack of widespread availability of laboratory tests and 
imaging. Diagnosis is suggested by a history of cough, dyspnoea, pleu
ritic pain, or acute functional or cognitive decline, with abnormal vital 
signs (e.g., fever, tachycardia) and lung examination findings. Diagnosis 
should be confirmed by chest radiography or ultrasonography. 

This uncertainty and the above-mentioned categorizations lead to 
empirical treatment selection. However, pneumonia is a leading cause of 
hospitalization in both children and adults. Most cases can be treated 
successfully, although it can take weeks to fully recover [2]. In many 
instances, pneumonia is severe, requiring hospitalization and in some 
cases, people with severe health conditions need to be treated in ICUs 
(intensive care units). In the last decades, new complications of viral 
infections by Coronaviruses have been identified. Coronaviruses are a 
large family of viruses that cause illness ranging from the common cold 
to more severe diseases such as Middle East Respiratory Syndrome 
(MERS) and Severe Acute Respiratory Syndrome (SARS). SARS- 
Coronavirus 2 (SARS-CoV-2) is a new strain firstly identified in 
humans in 2019 and causes Coronavirus Disease (COVID-19) that can 
spread to the lungs, causing pneumonia. It presents predominantly with 
fever, persistent cough, fatigue, dyspnoea, loss of smell and taste 
[10–11]. While many people recover, some develop SARS requiring 
hospitalisation, with escalation to intensive care support with oxygen, 
mechanical ventilation and, eventually, death [12]. A novel approach to 
improve diagnosis and prognosis of pneumonia is the use of biomarkers 
[13–14]. The diagnostic and prognostic role of procalcitonin (PCT) and 
mid-regional-pro-adrenomedullin (MR-proADM) were investigated in 
patients with pneumonia with high positive predictive value. 

Confirmation of pneumonia is not trivial and will be by nature 
context dependent, relying on a combination of what is available from 
clinical presentation, laboratory tests and diagnostic imaging. 

Recent studies push towards the adoption of artificial intelligence 
(AI) models amplifying diagnostic accuracy in radiology [15]. However, 
radiography suffers several disadvantages: low sensitivity to early stage 
pneumonia, lack of standardised interpretation [16], inter-rater vari
ability [17–18], absence of abnormalities in the chest radiographs of 
children [19] and potential harm due to exposure to x-rays. The biggest 
shortfall is that radiography is not widely available in low-income set
tings, which represent the areas with the highest disease burden. 

The breadth of challenges to diagnosing pneumonia, especially in 
low and middle-income countries (LMICs) highlight the potential benefit 
of a specific, sensitive diagnostic tool for pneumonia. In particular, a 
major issue is mistaken diagnosis of respiratory diseases due to over
lapping symptoms which may offer similar clinical presentation but 
have differing underlying causes and respond best to different treat
ments [20], for example pneumonia may be caused by bacteria and 
require antibiotics, whereas viruses may be the most likely cause of 
bronchitis [21]. 

One subset of AI, known as machine learning (ML), which is able to 
learn, reason, and self-correct without explicit programming, has the 
potential to provide such a solution. ML could play a major role within 
the practice of clinical medicine. Moreover, in the last few decades a 
particular subset of ML, so-called deep learning (DL) based on artificial 
neural networks (ANNs), is expanding the potential of ML in clinical 
practise [22]. 

In the case of pneumonia, ML has been shown to be promising in 
strengthening diagnostic accuracy when applied to hospitalized patients 
[23–24]. Despite numerous publications in this field, there are few cases 
of successful translation of ML techniques to clinical settings across the 

board [25]. 
In light of this, it is of great importance that researches consider the 

clinical setting and end user of their models. 
As such, a set of predictors which are easily recognised or even self- 

reported and a model which is suitable for incorporation into a referral 
or diagnostic tool such as an APP for mobile phones will be key re
quirements for assisting diagnosis of pneumonia in low or middle- 
income settings. Therefore, the use of ML systems to detect respiratory 
diseases via non-invasive measures such as signs and symptoms is 
gaining momentum. Indeed, such diagnostic tools are emerging as a 
route to facilitating successful task redistribution and improving access 
to accurate diagnosis in araeas with low numbers of qualified clinical 
staff [26]. However, due to the heterogeneity and diversity of ML sys
tems, there is an ongoing need to assess their performance in order to 
identify gaps in the research, impact improvements in practices and 
facilitate future comparative studies. To the best of our knowledge this is 
the first review of the application of ML to symptom-based detection of 
pneumonia. The research question we addressed is what symptom-based 
ML predictive models have been developed and how well do they 
perform? In this way, the aims of this study were to assess both the 
performance of published ML methods to diagnose pneumonia based on 
symptoms or signs, and the reporting quality of these studies. 

Therefore, the main contributions of our work were: (1) to show a 
systematic synthesis of the existing studies which proposed ML algo
rithms to diagnose pneumonia based on signs and symptoms, (2) to 
identify common most frequently used symptoms as ML features, (3) the 
best ML methods and performance. 

Based on our findings, we provided a recommended pipeline to 
design and implement predictive algorithms, with critical steps to follow 
to achieve a generalised and robust ML model. We anticipate that our 
findings and recommendations will be constructive in guiding future 
research and facilitating it is translation into clinical tools. 

2. Materials and methods 

This systematic review was conducted and reported in accordance 
with PRISMA guidelines for systematic reviews and meta-analyses 
(PRISMA checklist) [27–28] and the recommendations from the 
Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy 
[29]. The methods of the literature review as well as the inclusion and 
exclusion criteria were specified beforehand in a protocol (available 
from the authors on request). All types of studies were included if they 
reported on the use of artificial intelligence (AI) systems such as ma
chine learning (ML) or deep learning (DL) techniques applied to dis
tinguishing pneumonia based on signs and symptoms. The STARD 2015 
tool [30], which has been developed to assess the reporting quality of 
diagnostic accuracy studies, was used to rate the quality of the studies 
included in the systematic review. 

2.1. Search strategy 

Potentially relevant studies were identified by searching PubMed, 
Scopus, and Embase (through Ovidsp) electronic databases published 
form 2010 to May 2021. It has been shown that searching multiple da
tabases increases the overall recall in systematic reviews, however, there 
is a limit to the practicality of searching many databases [31]. Therefore, 
we selected three databases with good evidence of recall, which are 
appropriate for multidisciplinary research [32–33]. Only studies in En
glish were selected for screening. 

A broad search strategy including combinations of search terms for 
(i) the index test under evaluation and (ii) the target condition of interest 
was first developed for PubMed, and then adapted to all other databases. 
The full search strategy is reported in Supplementary Table 1. During the 
search, no methodology search filters to identify diagnostic test accuracy 
studies were used to avoid missing relevant records. In addition, in order 
to identify recent diagnostic accuracy test studies concerning the 
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diagnosis of pneumonia in patients affected by the recent pandemic of 
SARS-CoV-2 coronavirus infection, the MedRxiv server of preprints was 
searched using different combinations of search terms including 
“COVID-19”, “SARS-CoV-2”, “diagnosis”, “Pneumonia”, “signs”, 
“symptoms”, “artificial intelligence”, and “machine learning”. Finally, a 
linear reference search was conducted by checking the references of the 
studies identified in the index search that met the review’s inclusion 
criteria. Two researchers (CF and KS), who were blinded to the author 
information of the articles, independently screened all identified records 
for inclusion. In case of disagreements, a third author (RC) was 
consulted. 

2.2. Inclusion and Exclusion criteria 

A set of inclusion and exclusion criteria were defined among the 
authors before the study. 

Studies were considered for inclusion if they were classifiable as 
accuracy diagnostic test studies and their declared objectives were to 
differentiate individuals with clinically diagnosed pneumonia from 
controls or other diseases (e.g., bronchitis). Studies only focusing on 
determining the severity of pneumonia or its aetiology were considered 
out of the scope of this review to reduce heterogeneity among studies. 

Data collection could be both prospective and retrospective i.e., 
planned either before, or after the reference tests were performed. All 
types of study methods to recruit participants were allowed, including 
studies using a single set of inclusion criteria for patients with and 
without the target condition (Cohort type accuracy studies) and studies 
using different set of criteria (Case-control type accuracy studies). 
Prognostic accuracy studies, such as those using AI systems to identify 
patients who may develop pneumonia in the future, or experience 
pneumonia-related adverse events were excluded from the present 
review. 

The target condition had to be defined as pneumonia, without any 
limitation regarding its pathogenesis (e.g., viral, including SARS-CoV 
related pneumonia or bacterial pneumonia), or the classification sys
tem used (e.g., the WHO IMCI classification). Study participants of all 
ages and clinical characteristics were admitted. Studies not on human 
subjects were excluded. 

The characteristics of the index test evaluated in the studies were 
required to (i) use algorithms, defined as machine learning in the study, 
including appropriate apparatus, such as learning or training, aimed at 
seeking optimal answers and (ii) include signs and symptoms as pre
dictors in the machine learning algorithms. 

Signs and symptoms were defined as any subjective (symptoms) or 
objective (signs) abnormality that may indicate the presence of pneu
monia, such as cough, fever, dyspnoea, chest pain, chest, indrawing, 
sweating and shivering, breathing rate, etc. No limitations were set 
concerning other predictors that might have been used alongside signs 
and symptoms, including epidemiological and demographic parameters 
(e.g., age, gender, rural/urban site, season, region, etc.), imaging or 
laboratory test results. 

Studies had to report at least one accuracy measure of the index texts, 
such as sensitivity, specificity, accuracy and the area under the curve 
(AUC). Lastly, no pre-defined limitations were applied to the type of test 
used as reference standard (e.g., imaging examinations, microbiological 
tests), and the spectrum of study participants with and without the 
target condition. Review articles were not included directly, but refer
ences were screened and included individually if they met the review’s 
inclusion criteria. 

In summary, the inclusion criteria were as follows:  

1. studies classifiable as accuracy diagnostic test studies; 
2. the objective of the study was to differentiate individuals with clin

ically diagnosed pneumonia from controls or other diseases (e.g., 
bronchitis);  

3. algorithms, suggested as machine learning in the study, including 
appropriate apparatus, such as learning or training, aimed at seeking 
optimal answers;  

4. studies had to report at least one accuracy measure of the index texts, 
such as sensitivity, specificity, accuracy and the area under the 
curve; 

5. studies had to include signs and symptoms as predictors in the ma
chine learning algorithms. 

The following exclusion criteria were also applied:  

1. all review articles, letters, comments, abstracts, conference papers 
and case reports;  

2. studies only focusing on determining the severity of pneumonia or its 
aetiology and/or without diagnostic confirmation;  

3. prognostic accuracy studies;  
4. non-human subjects (e.g., animals);  
5. non-English papers. 

2.3. Data extraction and outcomes of interest 

Two review authors (KS, CF) performed the title and abstract 
screening and extracted the data from included studies and a third 
author (RC) checked the extracted data. For the final set of included 
records, the following information was retrieved: (i) literature data – 
title, first author and publication date; (ii) study design; (iii) study 
participants – kind of pneumonia, mean age and class, clinical setting (e. 
g., primary, secondary or tertiary care), sample size, sign and symptoms 
and other diseases; (iv) information regarding the reference standard, i. 
e., methodologies to distinguish pneumonia patients from control group 
or other respiratory diseases. In addition, data were also recorded on (v) 
the specific methodologies used to process and classify data for use in 
machine learning algorithms, including features selection methods, ML 
parameters and final predictors. Finally, data were also extracted on (vi) 
the summary measures for the predictive ability of the identified AI 
systems, including the systems’ sensitivity, specificity, accuracy and 
AUC measures. In addition, references to relevant ethical issues 
regarding the studies were also extracted. This study was not meant to 
estimate an overall measure of the accuracy of ML systems to diagnose 
pneumonia based on symptoms, but rather to provide a broad overview 
of the characteristics of the different approaches proposed. Therefore, 
only a qualitative synthesis of the study results was planned, antici
pating a broad heterogeneity in the types of study design, participants, 
test methods, type of analysis and reported accuracy measures in the 
included studies. 

2.4. Certainty assessment 

The reporting study quality of the included studies was rated via the 
STARD 2015 tool [30], which consists of a checklist of 30 items that 
should be included in the reports of diagnostic accuracy studies in order 
to ensure the interpretability of results, enhance the reproducibility of 
research and improve completeness and transparency. 

Given the characteristics of ML tests, items 22 and 25 were consid
ered not applicable and excluded from the quality assessment. When 
assessing adherence to the STARD 2015 checklist, each reporting 
requirement was rated as yes, no, maybe, or not applicable, with all 
disagreements resolved by consensus between the 2 reviewers. If, for 
each item, information was fully reported in the relevant section of the 
manuscript or provided in the supplementary material (including 
online-only material), the item was scored as a “yes”. If an item was only 
reported partially, it was scored as a “maybe”, whereas if an item was 
not applicable to the study was scored as NA. To optimize interobserver 
agreement, a training session was done for all reviewers using 2 articles. 

Three reviewers (KS, CF and RC) completed the study checklist for 
one third of the included records each. A cross-check by another author 
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was done for 10% of the studies and any disagreement was resolved by 
discussion. Results of the quality assessment were analysed qualitatively 
through a narrative summary of the main reporting issues identified in 
the studies. 

3. Results 

3.1. Study selection 

According to the search strategy described above, 876 titles were 
identified in PubMed, Scopus, OvidSP, and Pre-print servers. After 
removing duplicates, 775 titles were considered. Of these, 726 were 
excluded after reading the title and abstracts as they did not meet the 
inclusion criteria. From the remaining 49 full-text articles, 34 were 
removed due to the exclusion criteria. One article was identified through 
a linear search of the references included in the final studies. Finally, 16 
full texts were included in the qualitative analysis. A flow chart of the 
literature search results is shown in Fig. 1. 

3.2. Certainty assessment of included studies 

A summary of STARD 2015 adherence by item is presented in Fig. 2. 
The STARD items reported for each study is listed in the Supplementary 
Table 2. The STARD items are grouped in macro-categories such as: title 
or abstract, intro, methods, results, discussion and other info. Each item 
is coloured in green if information was fully reported in the study 
(“Yes”); light blues, if an item was only reported partially in the study 
(“Maybe”); red, if information was not reported (“No”); whereas if an 
item was not applicable to the study was coloured in grey (“NA”). 

Overall studies had a moderate reporting quality for all subitems in 
the sections of the STARD tool concerning the title and abstract, the 

description of the study design and participants, and discussions, but less 
so in the sections of the methods concerning the description of the test 
methods, including the index and reference tests; the analysis of the 
data; and the results sections including the description of the study 
participants and the results of the tests. 

STARD items were described as frequently reported (if ≥66% of the 
total studies reported a specific item), moderately reported (33%-66% of 
the total studies reported a specific item), and infrequently reported 
(≤33% of the total studies reported a specific item) [34]. 

Seventeen of the 28 items were frequently reported in whole or in 
part (i.e., “Yes” or “Maybe”) by the included studies. Some of the 
frequently reported items are of relevance to this study. In the method 
section related to the test methods, subitem 10.a, which relates to the 
description of the machine learning method used in the study (i.e., the 
index test) was fully reported by 11 studies (69%), partially by 1 study 
(6%), whereas no sufficient information was provided in 4 studies 
(25%). Similarly, subitem 10.b, related to the description of the refer
ence standard used to calculate the accuracy of the index test was re
ported fully by 9 studies (56%). Moreover, in the results section, item 
24, related to the estimates of diagnostic accuracy and their precision 
(such as 95% confidence intervals), was reported by 8 studies (50%). 

Six of the 28 items were moderately reported, in whole or in part by 
the included studies. These include for example item 11 in the method 
macro-area (i.e., rationale for choosing the reference standard) was re
ported in full by 7 studies (43%). Another important item is 12 (i.e., 
definition of and rationale for test positivity cut-offs or result categories 
of the index test, distinguishing pre-specified from exploratory), which 
was only reported in full or partially by 6 studies (37%). In the results 
macro-area, item 20, which regards baseline demographic and clinical 
characteristics of participants, was reported by 10 studies (62%). 

Five of the 28 items were infrequently reported, in whole or in part 

Fig. 1. PRISMA search workflow.  
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by the included studies. These include item 15 (i.e., how indeterminate 
tests were handled; reported by 3 studies (18%)), item 17 (i.e., whether 
analyses of subgroups and heterogeneity were prespecified or explor
atory; reported by 2 studies (12%)), item 18 (i.e., whether intended 
sample size and how it was determined; reported by none of the studies 
(0%)), item 19 (i.e., flow of participants, using a diagram; reported by 
only two studies (12%)) and item 23 (i.e., cross tabulation of the index 
test results; fully reported by 1 study (6%)). 

3.3. Characteristics of the included studies 

Study characteristics regarding study design and subject population 
as well as machine learning methods and performance measures were 
extracted and presented in Tables 1 and 2. 

3.3.1. General Study Characteristics 
A summary of types of pneumonia, reference standards, study pop

ulations and other clinical characteristics of the included papers is given 
in Table 1. 

The vast majority of studies identified concerned CAP, with patients 
presenting symptoms of pneumonia to EDs or other healthcare facilities. 
In one case (Rother et al. [41] it is unclear whether HAP or CAP is 
considered. Interestingly, one study by Porter et al. [46] included 

pneumonia identified through presentation to the ED, inpatient wards 
and ambulatory care units, suggesting an inclusion of both HAP and 
CAP. Two studies focused specifically on the detection of COVID-19 
pneumonia. 

Unsurprisingly, radiography, which is widely considered the gold 
standard for confirmation of pneumonia, was the most used reference 
test. In several papers the reference standard was unclear 
[36–37,41,48–49]. Grigull et al. [36], Yu et al. [48] and Huang et al. 
[49] gave no mention of how diagnosis of pneumonia was performed, 
Bejan et al. [37] described diagnosis as being performed by a ‘nurse with 
6 years of experience’ but not the criteria used for classification, Rother 
et al. [41] mentioned ‘standard diagnostic criteria’ but offered no 
further detail. Further, as well as omitting the details of how pneumonia 
positive cases had been established, Yu et al. [48] and Huang et al. [49] 
did not make clear how cases of COVID-19 and pneumonia had been 
confirmed, i.e., whether PCR test results were available. 

14 out of 16 studies provided information on study population age. 
Of these, 8 focused on childhood pneumonia, 5 on pneumonia in adults 
and one in a mixed age population. Three of the included studies were 
focused on LMIC settings and the specific challenges regarding diagnosis 
of childhood pneumonia in such areas [23,42,44], indicative of those 
most vulnerable to the disease. Of these studies, only Pervaiz et al. [44] 
included other respiratory diseases which may be difficult to distinguish 

Fig. 2. Frequency of Standards for Reporting of Diagnostic Accuracy 2015 Items. “Yes” was assigned if information was fully reported; “Maybe” was assigned if an 
item was only reported partially; an item was scored as “No” if information was not reported; whereas if an item was not applicable to the study was scored as “NA”. 

K. Stokes et al.                                                                                                                                                                                                                                  



Biomedical Signal Processing and Control 72 (2022) 103325

6

Table 1 
Information extracted from final selection of papers describing the type of pneumonia considered, population characteristics and study design.  

Author, year Type of study Reference standard, with criteria 
(if given) 

Population type: 
Age (average if 
given), setting 

Other diseases Number of patients Availability of Data 

Steurer et al., 
2011 [35] 

Prospective 
cohort study 

By set of symptoms and signs 
associated with radiographic 
shadowing with ‘no other 
explanation’ 

Adults  
(46.7 ± 16.3 
years)   

Chronic bronchitis Total: 621.  
Pneumonia: 127.  
No pneumonia: 
494. 

Private dataset (Hospital). 

Grigull et al., 
2012 [36] 

Retrospective  
case-control 
study 

Diagnosis by clinicians, cross- 
checked with medical definitions 

Children  
(6.5 ± 2.5 
years).  
ED   

Many common 
diagnoses from ED.    

Relevant to analysis:  
Asthma,  
Bronchitis   

Total: 692.  
Pneumonia: 54.   

Private dataset (Hospital). 

Bejan et al., 
2012 [37] 

Retrospective 
study   

Classified by a research study 
nurse with 6 years of experience.  
Positive if the patient had 
pneumonia  
within the first 48 h of ICU 
admission Negative if the patient 
did not have pneumonia or the 
pneumonia was detected after the 
first 48 h of ICU admission 

No age 
specification   

Not specified Total: 426.  
Pneumonia:66. 

Private dataset (Hospital). 

DeLisle et al., 
2013 [38] 

Retrospective 
study 

‘Possible pneumonia’: non- 
negative chest imaging report and 
one or more identified symptom  
‘Pneumonia-in-plan’: Non- 
negative chest imaging report and 
pneumonia listed as first or 
second diagnostic possibility by 
clinician 

Adults  
(61 ± 15 years) 

Not specified Total: 2747.  
‘Possible 
pneumonia’: 370.  
‘Pneumonia-in- 
plan’: 250. 

Private dataset (Hospital). 

Haug et al., 
2013 [39] 

Retrospective 
study 

Primary discharge diagnosis of 
pneumonia: Defined by ICD-9 
codes 

No age 
specification.  
ED 

Not specified Total: 48449.  
Pneumonia: 2413.   

Private dataset (Hospital). Available 
from the corresponding author on 
reasonable request. 

van Vugt 
et al., 2013 
[40] 

Retrospective 
study 

Radiographically confirmed  
clinical pneumonia 

Adult  
(50 years) 

Pulmonary  
Cardiac,  
Diabetes mellitus. 

Total: 2820.  
Pneumonia: 140. 

Private dataset (Hospital). 

Rother et al., 
2015 [41] 

Prospective 
monocentre 
study 

The diagnosis was confirmed by a 
paediatric pulmonologist using 
standard diagnostic criteria. 

Children   Not specified Total: 170.  
Pneumonia: 21. 

Data available in supplementary 
materials at https://www.ncbi.nlm. 
nih.gov/pmc/articles/PM 
C4534438/. 

Naydenova 
et al., 2016 
[23] 

Case-control 
study   

Diagnosed by clinician supported 
by chest X-rays.  
Expanded WHO and IMCI 
guidelines:  
Very severe  
Central cyanosis/ not able to 
drink  
Severe  
Lower chest wall in drawing  
non-severe Fast breaths  
(>50 breaths per min for 2–11 m, 
>40 for 12–59 m)  
No pneumonia  
None of above 

Children  
(2–59 months).  
Gambia   

Not specified Total: 1581.  
Pneumonia: 780.   

The data supporting this article 
have been registered on Oxford 
University Research Archive (ORA) 
and can be accessed via http://dx. 
https://doi.org/10.5287/bodleian: 
ht24wj41z . 

Nuzhat et al., 
2017 [42] 

Unmatched 
case-control 
study 

Radiographically confirmed  
clinical pneumonia  
WHO radiological criteria 

Children  
(0–59 months).  
Dhaka Hospital   

Diarrhoea,  
Acidosis. 

Total: 713.  
Pneumonia: 267.   

Private dataset (Hospital). Available 
from the corresponding author on 
reasonable request. 

De Santis 
et al., 2017 
[43] 

Prospective 
observational 
study 

Radiographically confirmed  
clinical pneumonia 

Children  
(2 months-10 
years) 

Not specified Total: 1005.  
Pneumonia: 31. 

The database is available from the 
Zenodo repository (https://zenodo. 
org/record/166713#.WC 
r_WU2QyMp). 

Pervaiz et al., 
2018 [44] 

Retrospective Radiographically confirmed  
clinical pneumonia. Defined by 
lobar consolidation (with or 
without pleural effusion) 
. 

Children  
(21.3 ± 16.2 
months).  
LMIC Inner-city   

Asthma,  
Bronchitis,  
Upper respiratory 
tract infection. 

Total: 832.  
Pneumonia:221. 

Private dataset (Hospital). 

Groeneveld 
et al., 2019 
[45] 

Prospective 
observational 
cohort study 

Radiographically confirmed  
clinical pneumonia  
Defined by consolidation on X- 
Ray 

Adult  
(56 years)   

Comorbidity.  
No further detail. 

Total: 249.  
Pneumonia: 30. 

Private dataset (Hospital). Available 
from the corresponding author on 
reasonable request. 

Porter et al., 
2019 [46] 

Prospective 
multicentre 
study 

At least one feature from both of 
the following categories:1. 
History of: (i) fever in prior 48 h 

Children  
(29 days to 12 
years) 

Not specified Total: 585.  
Pneumonia:87.   

Private dataset (Hospital). Available 
from the corresponding author on 
reasonable request. 

(continued on next page) 
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and indeed are likely to be highly common in presenting patients. 
Indeed, only 6 studies concerned differential diagnosis of pneumonia 
from other diseases while the remainder either did not specify or spe
cifically excluded other respiratory conditions from the population. 
Inability to distinguish between other, similarly presenting respiratory 
diseases is a clear limitation to the utility of any proposed diagnostic 
tool. 

Finally, in 11 of 16 studies the data used was not provided in the 
paper nor registered in any opensource database, although in 6 of these 
studies availability was granted on request to the authors. In 3 cases data 
was made available in public repositories. 

3.3.2. Artificial intelligence study characteristics 
Summaries of feature selection, machine learning methods, valida

tion process and their performance to automatically detect pneumonia 
are presented in Table 2, for more details see Supplementary Table 3. 
The best ML method was chosen as the one presenting a higher AUC, 
which is a good estimator of sensitivity and specificity. In case a study 
explored different problems connected to pneumonia such as classifi
cation of different grades of severity (e.g., high, moderate and mild), 
only the methods employed by the included studies to automatically 
detect pneumonia from controls or other respiratory disease were 
extracted and tabulated in Table 2. 

ML model choice varied from relatively simple methods such as lo
gistic regression (31% of the selected papers) [50] to deep learning al
gorithms such as artificial Neural Networks (aNNs) [51] or 
Convolutional Neural Networks (CNNs) [52] (19% of the selected 

papers) as also shown in Fig. 3. 
Logistic regression is a simple technique for binary classification 

problems, and it is often used to model the probability of a certain class 
or event existing [50]. Whereas aNNs and CNNs are more advanced 
machine learning models, which are capable of learning any nonlinear 
function; in particular CNNs is a type of aNN mainly used in image 
recognition and processing that is specifically designed to process pixel 
data [52]. 

Several studies [40,42,44–45,47] (5 out of 16 studies) selected 
regression-based models as the method achieving the best overall per
formance. The regression-based models ranged from simple or multi
variate logistic regression [53] to more sophisticated techniques such as 
LASSO regression [54]. In particular, LASSO is a penalized regression 
approach that estimates the regression coefficients by maximizing the 
log-likelihood function (or the sum of squared residuals) and automat
ically deletes unnecessary covariates. 

Five [23,38–39,43,55] out of 16 studies employed a tree-based 
model to automatically detect pneumonia. The majority of tree-based 
algorithms were Random Forest (RF) [56] and CART trees [57]. CART 
algorithm is a decision tree based on Gini’s impurity index as splitting 
criterion. It is a binary classifier built by splitting single nodes into child 
nodes repeatedly. On the other hand, RF is a bootstrapping algorithm 
based on the CART tree model. In particular, RF creates multiple CART 
trees based on “bootstrapped” samples of data and then combines the 
predictions. The combination is an average of all CART models pre
dictions. Random Forest can achieve better predictive power than a 
CART model but, RF rules are not easily interpretable. 

Table 1 (continued ) 

Author, year Type of study Reference standard, with criteria 
(if given) 

Population type: 
Age (average if 
given), setting 

Other diseases Number of patients Availability of Data 

or fever at the time of 
examination, (ii) cough, (iii) 
dyspnoea, or (iv) chestpain2. 
Either focalbexamination findings 
including crackles, bronchial 
breath sounds, focal decreased 
breath sounds; ORA chest 
radiograph with new 
consolidation with normal 
auscultation findings 

Feng et al., 
2020 [47] 

Retrospective 
study 

Suspected COVID-19 
pneumonia:  
- Epidemiological history  
- CT imaging characteristics of 
viral pneumonia  
-Any one of: Fever &/or 
respiratory symptoms, Total 
leukocyte count normal or 
decreased or lymphopenia  
Confirmed COVID-19 
pneumonia:  
Positive test result from throat 
swab of upper respiratory tract 

Adult  
(34 years, IQR: 
29 to 42).  
ED 

Hypertension,  
Diabetes,  
Cardiovascular 
disease, Chronic 
obstructive 
pulmonary disease, 
Malignancy,  
Chronic kidney 
disease, Chronic 
liver disease. 

Total: 164.  
Confirmed COVID- 
19 pneumonia: 7. 

Private dataset (Hospital). Available 
from the corresponding author on 
reasonable request. 

Yu et al., 
2021 [48] 

Retrospective 
study 

Based on ‘discharge diagnoses’ Children  
(1 day – 18 
years, mean age 
3.17).  
Respiratory 
department of 
Children’s 
Hospital. 

Upper respiratory 
tract infection,  
Asthma,  
Bronchitis. 

Total: 14697. 
Pneumonia: 42.3% 
(6217) 
.    

Some overlap in 
diseases diagnosed 
per patient. 

Private dataset (Hospital). Available 
from the authors upon request with 
Hospital’s permission. 

Huang et al., 
2021 [49] 

Retrospective 
study 

‘Confirmed COVID-19′ 
pneumonia 

Children and 
adults (8–84 
years).  
General People’s 
Hospital. 

Not specified Total: 416.  
Pneumonia: 209. 

The COVID-CT dataset is available 
at https://github.com/UCSD-AI4H/ 
COVID-CT 

ED: Emergency Department. 
WHO: World Health Organization. 
CT: Chest computerized tomography (radiographic technique). 
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Table 2 
Information extracted from final selected papers describing the feature selection, ML methods and model performance (in the case of multiple ML methods, best 
performing metrics are given).  

Author, year Feature selection methods Model development 
(training, validation 
and/testing) 

Classes (in bold 
target class) 

Final predictors AI methods  
(Best performing in bold if 
specified) 

Performance 
estimates 

Steurer et al., 
2011 [35] 

Manual pre-selection for:  
Ease of availability  
Reliability 

Leave-one-out cross 
validation 

Binary: patient 
with pneumonia 
and without 
pneumonia 

Chronic cough  
Daily fever  
Dyspnoea  
Respiratory rate  
Pleural friction rub  
CRP 

CART Sensitivity: -  
Specificity: -  
Accuracy: -  
AUC: 90% (95% 
CI: 87% to 93%). 

Grigull et al., 
2012 [36] 

Manual: identified based 
on parameters frequently 
investigated/measured in 
children in ED who could 
not be instantly diagnosed 

Bootstrap validation 
and testing on an 
independent subset 
of data 

Binary: 
pneumonia and 
other diseases 

14 clinical factors and vital 
signs including: age, 
temperature, blood pressure, 
etc.  
12 laboratory parameters 
including:  
haemoglobin, leukocyte 
count, CRP level, etc.   

Combination of SVM 
(parameters set based on data)  
aNNs  

(14,400 numeric weights 
distributed throughout three 
layers. The input layer included 
100 parallel neurons, with each 
neuron gathering the 26 input 
signals)  
fuzzy logics  
voting algorithm   

Sensitivity: 
95%  
Specificity: 
92%  
Accuracy: -  
AUC: 99% 

Bejan et al., 
2012 [37] 

Considered as features all 
possible uni-grams and bi- 
grams of words and UMLS 
concepts  
Ranked variables based on 
association between 
feature and category using 
χ2 and t statistics 

Fivefold  
cross-validation 

Binary: 
pneumonia 
versus non 
pneumonia 

Words and concepts (not 
specified) 

SVM Sensitivity: -  
Specificity: 
98%  
Accuracy: 86%  
AUC: - 

DeLisle et al., 
2013 [38] 

Not specified Not clear Binary: patient 
with pneumonia 
and without 
pneumonia 

Pneumonia ICD-9 Code  
Text of clinical notes  
Imaging obtained  
Text of imaging reports 

Random fields probabilistic 
classifier 

Sensitivity: 
58–75%  
PPV: 20–70%  
Specificity: -  
Accuracy: -  
AUC: - 

Haug et al., 
2013 [39] 

Two methods (both AUC 
given):  
Fully automated process, 
based on highest χ2 value  
Manual by clinicians 

10-fold cross- 
validation 

Binary: positive  
pneumonia cases 
and negative 
pneumonia cases 

3 vital signs including 
temperature, heart rate, 
respiratory rate  
7 laboratory parameters 
including anion gap, BUN 
Chloride, Spo2, etc  
Chest x-ray results  
Nursing assessment and 
symptoms including 
abdominal exam, abnormal 
breath sounds, pleuritic pain, 
breath sounds, strong cough, 
etc. 

Bayesian network classifier 
(tree-augmented naïve Bayes 
(TAN)5)   
(Estimation of Bayesian 

network parameters using 
expectation maximization)      

Sensitivity: -  
Specificity: -  
Accuracy: -    

Method 1:  
AUC: 94% (95% 
CI 94,2% to 
0.94,7%)  
Method 2:  
AUC: 92% (95% 
CI 91,6% to 92,4 
%) 

van Vugt 
et al., 2013  
[40] 

Backward and forward 
selection 

Bootstrapping for 
internal validation 

Binary: patients 
with pneumonia 
and without 
pneumonia 

Absence of runny nose  
Breathlessness  
Crackles  
Diminished breath sounds on 
auscultation  
tachycardia  
fever  
CRP 

Multilevel LR Sensitivity: -  
Specificity: -  
Accuracy: -  
AUC: 77% (95% 
CI 73% to 81%) 

Rother et al., 
2015 [41] 

Not specified Ten-fold stratified 
cross validation 

Multiclass 
(pneumonia 
versus other 
diseases) 

Six questions to evaluate 
disease history and 
symptoms such as whistling/ 
wheezing sound, drowsy, etc 

Program consisting of eight 
classifiers:  
SVM  
ANN  
fuzzy rule-based  
random forest  
LR  
linear discriminant analysis  
naïve Bayes  
nearest neighbour ensemble 

Sensitivity: 
90%  
Specificity: -  
Accuracy: -  
AUC: - 

Naydenova 
et al., 2016  
[23] 

Features must be 
measurable in point of care 
setting  
Features selected if they 
appear in top 10 of at least 
three techniques of both:  
Maximum relevance  
Majority voting 

Fivefold cross- 
validation and 
testing on 
independent folder 

Binary: 
pneumonia and 
matched-age 
control group 

Respiratory rate  
Heart rate  
Temperature  
Oxygen saturation  
Age 

RF (750 decision trees, 
searching over 2 variables at 
each tree node) 

Sensitivity: 
98.2% (95% CI 
97.9 – 98.8%)  
Specificity: 
97.6% (95% CI 
97.1 – 98.0%)  
Accuracy: 
95.9% (95% CI 

(continued on next page) 
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Two studies investigated the combination of several ML methods via 
voting [36,41]. Voting is one of the easiest ensemble methods. In 
particular, ensemble methods are techniques that create multiple 
models and then combine them to produce improved results [58]. Gri
gull et al., [36] and Rother et al., [41] showed that the combination of 
different ML methods such as SVM, aNNs, fuzzy logics and more 

traditional ML (RF, LR, etc.) achieved higher accuracy to discriminate 
pneumonia versus other diseases. 

Two studies [38–39] employed probabilistic ML methods to detect 
patients with pneumonia and without pneumonia. DeLisle et al. [38] 
reproduced a previously reported model presented in [59], whereas 
Haug et al. [39] developed Bayesian networks, built around directed 

Table 2 (continued ) 

Author, year Feature selection methods Model development 
(training, validation 
and/testing) 

Classes (in bold 
target class) 

Final predictors AI methods  
(Best performing in bold if 
specified) 

Performance 
estimates 

95.3 – 96.5%)  
AUC: 99.7% 
(95% CI 99.3 – 
99.8%) 

Nuzhat et al., 
2017 [42] 

Two methods  
Odds ratio Backward 
stepwise LR  
(controlled for covariates) 

No internal or 
external validation 

Binary: 
pneumonia and 
unmatched- 
control group 

Cough and lower chest wall 
in drawing (combined) 

LR Sensitivity: 
94% (95% CI 
89& to 97%)  
Specificity: 
99% (95% CI 
97% to 100%)  
Accuracy: -  
AUC: - 

De Santis 
et al., 2017  
[43] 

Multivariate analyses No internal or 
external validation 

Binary: 
pneumonia 
versus other 
diseases 

For radiological pneumonia:  
abnormal chest auscultation  
For acute HHV6 infection:  
Dehydration For bacterial 
disease (any) 
:  
Chest in drawing For viral 
disease (any) 
:  
Jaundice 

CART Sensitivity: 
38%  
Specificity: 
97%  
Accuracy: -  
AUC: - 

Pervaiz et al., 
2018 [44] 

None: Features set based 
on WHO criteria 

No internal or 
external validation 

Binary: 
pneumonia and 
acute respiratory 
illnesses group 

WHO pneumonia predictors LR Sensitivity: 
66% (95% CI, 
59%-73%)  
Specificity: 
53% (95% CI, 
49%-57%)  
Accuracy: -  
AUC: 62%; 95% 
CI, 0.58–0.67 

Groeneveld 
et al., 2019  
[45] 

Univariate analysis of 
clinical risk factors  
Multivariate analysis of 
signs and symptoms and 
variables/ biomarkers. 

No internal or 
external validation 

Binary: Patients 
with pneumonia 
and without 
pneumonia 

Runny nose absent  
Feel ill  
CRP > 30 mg/l 

LR  
Runny nose absent, B = 1.230  
Feel ill, B = 2.378  
CRP > 30 mg/l B = 1.572    

Intercept: − 4.797 

Sensitivity: -  
Specificity: -  
Accuracy: -  
AUC: 75% (95% 
CI 65% to 85%) 

Porter et al., 
2019 [46] 

Not specified Leave-one-out  
cross-validation 

Binary: 
pneumonia 
versus other 
diseases 

Not specified SoftMax neural  
network 

PPA 87%, NPA 
85% 

Feng et al., 
2020 [47] 

Candidate features based 
on expert opinion and 
availability in medical 
records  
LASSO 

Testing on an 
independent subset 
of data 

Binary: Covid19 
pneumonia 
versus suspected 
patients 

7 laboratory parameters 
including basophil count, 
platelet count, interleukin-6, 
etc.  
7 symptoms including: 5 
clinical factors and vital signs 
including age, heart rate, 
etc., fever, shiver, shortness 
of breath, etc.   

LR (LASSO)   Sensitivity: 
100%  
Specificity: 
78%  
Accuracy: -  
AUC: 93% 

Yu et al., 
2021 [48] 

adaptive feature infusion   internal validation 
and testing on 
independent subset 
of data.   

Binary: 
pneumonia 
versus other 
diseases 

unstructured  
clinical notes including chief 
complaints, physical 
examinations, and  
clinical test results 

Deep learning with adaptive 
feature infusion module. 

Sensitivity: -  
Specificity: -  
Accuracy: -  
AUC: 87.8% 

Huang et al., 
2021 [49] 

Not specified testing on 
independent subset 
of data. 

Binary: Covid19 
pneumonia 
versus healthy 
patients 

CT image information  
11 symptoms including 
fever, cough, muscle ache, 
fatigue, headache, nausea, 
diarrhoea, stomach-ache and 
dyspnoea 

Deep learning FaNet Sensitivity: -  
Specificity: -  
Accuracy: 
98.28%  
AUC: - 

CI: Confidence Interval, LR: Logistic Regression, SVM: Support Vector Machine, CART: Classification and Regression Tree, aNN: artificial Neural Network, LASSO: 
Least Absolute Shrinkage and Selection Operation, CT: Computed Tomography imaging technique. 
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links reflecting mathematical relationships between variables. 
Support vector machine (SVM) was frequently employed in several 

studies but only one study [37] reported SVM as the best performing 
model. SVM belongs to a general field of kernel-based machine learning 
methods and are used to efficiently classify both linearly and non- 
linearly separable data [60]. 

Only one study achieved the best performance using a deep learning 
algorithm (i.e., artificial neural networks) compared to other traditional 
machine learning methods [46]. Two recent studies [48–49] also 
employed deep learning methods achieving high accuracy and AUC 
value. Yu et al. [48] presented a novel deep learning algorithm for the 
disease identification stage, including adaptive feature infusion and 
multi-modal attentive fusion in order to fuse structured and text data 
together. Huang et al. [49] explored a deep learning based dual-tasks 
network, named FaNet [61], performing both diagnosis and severity 
assessments for COVID-19 based on the combination of CT imaging and 
clinical symptoms. 

The reason for the use of mostly linear classifiers may be due to the 
fact that those models are mainly developed to be implemented in a 
Decision support system or CAD system. In such systems less-complex, 
more interpretable models to clinicians and non-AI experts are 
preferred over more advanced AI methods such as deep learning, which 
are often referred as “black boxes” along with more complex ML algo
rithms such as SVM. 

Among the selected studies, two studies [47,49] investigated pa
tients with suspected COVID-19 pneumonia. Feng et al. [47] employed a 
Logistic regression (LASSO) method to discriminate among COVID-19 
pneumonia and healthy patients using combinations of symptoms and 
laboratory parameters. Whereas, Huang et al. [49] detected COVID-19 
pneumonia patients from healthy patients using a state-of-the-art deep 
learning algorithm (FaNet) by using CT images and symptoms. 

3.3.3. Ethical aspects 
Several ethical issues were addressed by the included studies. Some 

of them were not fully investigated, such as informed consent, reference 
to minors or, generally, to the age of patients (considering that that the 
youngest and the oldest are the most affected by pneumonia) or to 
gender issue [36,41–44,46,48]. 

Aspects that were frequently mentioned were related to the alloca
tion of resources [23,43,62], in particular for limited resource settings 
(LRSs) [42–44,48], in which morbidity or infant mortality for pneu
monia [42] is high, the lack of resource [42,48], but also the need for 
specific training of staff [44], doctors and/or nurses [42,48] on more 
advanced tools. This raises an important ethical question that is a global 
challenge [47]: the difficulty of LRSs in complying with medical and 
technological international standards. 

Another recurring theme was the man–machine relationship 
[36,39], still controversial from an ethical point of view. There is 
unanimous recognition that technology is a support tool for doctors 
[36,39,41,43] that adds objectivity, precision [44–45,48–49] and speed 
to the diagnosis. However, the entry of technology in the moment of 
diagnosis somehow changes the doctor-patient relationship, objecti
fying the care relationship [36–37,40], which on one hand leads to its 
depersonalization and on the other to greater rigor (for sensitivity and 
specificity) which could limit medical malpractice and the consequent 
litigation [36]. The question of a possible replacement of man by ma
chine for the doctor decision making is also mentioned in [23,36,39], 
but it is made clear that doctors themselves are aware of the urgent 
clinical need for algorithms and that they do not perceive this as 
competition [41,45]. 

In addition, some ethical problems relating to data management 
come forward, in particular about collection, anonymization/deidenti
fication and sharing of data [36,38,42,62]. Those issues were addressed 
transversally with reference to some ethical principles involved, not 
only in data management, but more generally in the use of artificial 
intelligence in the field of healthcare. Principles mostly addressed were: 
affordability [23], accessibility [44,46,49], accuracy [23,39–41,46,48], 
appropriateness [46], timing and efficiency [23,37–38,42,46,49,62] 
and reproducibility [23,38]. In general, there is an overall need for 
ethical guidelines and references (including ethics committees [41,46] 
that can be a guarantee for the approach to technology. 

4. Discussion 

This systematic literature review provided a comprehensive over
view of the existing studies which proposed ML algorithms to diagnose 
pneumonia based on signs and symptoms. The use of AI for image-based 
detection of pneumonia and particularly COVID-19 has been reviewed 
[63–64], but to the best of our knowledge systematic review of 
symptom-based models is lacking in the existing literature. This is 
particularly timely as AI based diagnostic tools begin to appear in 
medical devices. However, the practicality of AI in current medical 
practice is still not fully understood by clinicians. AI could help to reduce 
mistaken diagnosis. In fact, respiratory diseases can present overlapping 
symptoms which may offer similar clinical presentation but have 
differing underlying causes and respond best to different treatments. 
Therefore, the advances made in machine learning models could assist 
clinicians in diagnosing pneumonia in rapid time by considering a high 
number of variables related to patient care and medical history. To 
address the difficulties effectively and efficiently, it may be worth 
considering the inclusion of AI in medical practice. This could positively 
contribute to the patients’ condition by analysing treatment personali
zation strategies as a result of predicting clinical situations that could 
deteriorate patients’ health. With the dramatically fast spread of COVID- 
19, analysing complex medical datasets based on machine learning can 
provide opportunities for developing a simple and efficient COVID-19 
diagnostic system. Nevertheless, several issues, such as poor realised 
performance in clinical settings, as discussed by van Schalkwyk et al. 
[65], may be alleviated by proper ethical, contextual and performance 
evlaution during their conception and design. 

Of the hits retrieved in the systematic review, many studies were 
published from 2020 to 2021 and concerned detection of COVID-19. 
However, the majority of these articles did not meet the inclusion 
criteria as they either focused on symptomatic detection of early disease 
(not associated with pneumonia) or imaging-based detection with no 
input from symptoms or signs. The included studies were highly het
erogeneous concerning the study design, the healthcare setting, the 
study population and the ML algorithm employed. Specifically, three 
papers focused on diagnosing childhood pneumonia in LMIC settings. 
This is a very relevant context which warrants more research, as 
application of AI algorithms in countries with highly constrained 
healthcare settings and deprived populations may be of even higher 

Fig. 3. ML methods Information extracted from final selected papers. SVM: 
Support Vector Machine; LR: Logistic Regression; RF: Random Forest. 
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value compared to higher income countries. 
The reporting quality was satisfactory for some sections of the 

STARD checklist, but less so for relevant sections such as the description 
of the index (ML model) and reference tests and the analysis of the data 
in the methods section as well as the description of the study participants 
and the results of the tests in the results section. 

For example, items which were less frequently reported included the 
details of the reference and index tests, such as a clear description of the 
reference standard used as benchmark, the definition of rationale for test 
positivity cut-offs or result categories, or the way that indeterminate 
results of the reference test were handled. Noteworthy and concerning 
was the fact that such details remained absent even in the most recent 
publications, which focused on providing improved detection of COVID- 
19 pneumonia, with only one study providing any details on either 
diagnosis of pneumonia or method for confirmation of SARS-CoV-2 
infection. In addition, the characteristics of the study participants, 
such as the distribution of severity of disease in those with the target 
condition, or the distribution of alternative diagnoses in those without 
the target condition were also less frequently reported. All these aspects 
warrant more careful consideration and higher reporting standards to 
allow a clear judgment on the risk of bias in the accuracy estimates and 
to allow replication and validation of the proposed ML-algorithm in 
other settings or populations. Similar issues and deviations from best 
practice have been highlighted concerning the relative explosion in the 
publication of ML algorithms for diagnosis and management in response 
to the spread of COVID-19, the result of which clouds the most clinically 
beneficial routes and prevents the realisation of benefits to patients [66]. 

The references to ethics found in the selected texts suggest that there 
is an overall awareness of the importance of ethical principles and 
guidelines to guarantee the protection of people’s rights. However, the 
urgency of adopting a shared ethical reference framework emerges (i.e., 
European Commission, Ethics guidelines for trustworthy AI). Furthermore, 
in order to make ethics a real tool of concrete support and not just a 
humanitarian embellishment, it should be considered a decisive refer
ence also in the design and implementation phase of AI algorithms, to 
better guarantee users’ rights. 

Concerning the ML algorithms, there was a huge heterogeneity 
among studies and many pitfalls were identified in the development of a 
reliable and generalisable ML model to diagnosis pneumonia via 
symptoms and signs. Few studies employed a feature selection step in 
the development of the ML model. Nevertheless, feature selection is a 
critical step to develop a robust classifier in medical and health appli
cations. In fact, in order to minimize the over-fitting risk in a ML model, 
the number of features used in the model and its cardinality should be 
limited by the number of subjects presenting the event to detect (i.e., 
pneumonia) in the training folder or in a separate folder specifically 
designed to conduct the feature selection process [67–69]. The splitting 
of the dataset in subfolders is crucial in order to avoid bias and over
fitting problems and increase the external validity of the model. If data 
availability is not a problem, the dataset could be split into three 
different folders, where folder 1 is designed for feature selection via 
several existing techniques [70–71]; folder 2 to train and validate the 
model; an independent dataset (folder 3) to test the final model and 
assess the overall performance [67–69]. However, although the best 
approach is to select the minimum set of features using a different folder 
from the one adopted to train the machine learning model [67–69], in 
case the dataset is small, feature selection and model training can be 
performed on the same folder (folder 1). As reported in Table 2, some 
studies did not employ a clear feature selection method and in case they 
did, they performed the feature selection on the whole dataset or during 
the training of the algorithm. It is important to bear in mind that a 
significant small set of clinical features strongly simplifies the physio
logical interpretation of results, by directing attention only on the most 
informative features [67]. In the detection of pneumonia, the identifi
cation of symptoms that can be used as final predictors is of extreme 
importance to the physicians. Therefore, hand-crafted features and the 

use of PCA is not recommended. As reported in Table 2, there is a 
mixture of manual and automated approaches to feature selection pro
cess in the selected studies. Manual methods have a clear focus on 
clinical utility and application. Some key criteria used were: (i) 
measurable in a point of care setting [23]; (ii) parameters frequently 
investigated [36]; (iii) ease of availability [35,62] and (iv) reliability 
[35]. Haug et al. [39] make an interesting comparison between a fully 
automated ML model, from feature selection to performance, and a 
semi-automated model in which features are chosen manually based on 
medical relevance by clinicians. The large dataset available in this study 
allowed selection of 40 features by both methods. Of these features there 
was considerable overlap, notably certain symptoms picked up by both 
methods were: heart rate, respiratory rate, temperature, abnormal 
breath sounds, moderate cough, wheezes, productive cough and rales 
breath sounds. It seems certain features such as ‘Not oriented to place’, 
which are selected in the automated process are absent in the manual, 
perhaps due to a lack of direct clinical/biological relevance to pneu
monia. Interestingly slightly better performance was achieved using the 
manually created model, which may highlight the motivation for a firm 
evidence basis in ML design. Other popular methods were uni/multi 
variate analysis and logistic regression. One technique appearing in the 
most recent publication [47] was Least Absolute Shrinkage and Selec
tion Operator (LASSO). LASSO builds on classic regression models and is 
emerging as a more interpretable clinically useful method for selecting 
predictors, as by nature it strives to create sparse models (fewer pre
dictors) [72]. Five studies [38,41,44,46,49] did not employ any feature 
selection process. 

As far as the validation process is regarded, the training dataset is not 
known to have a sub-category, whereas the validation dataset can be 
further divided by types: (i) internal validation, whose sample originates 
from the same sample as the training dataset, (ii) external validation, 
whose sample is composed of independently sampled data, (iii) internal- 
split validation, which uses a sample that has been separated from the 
original dataset for the purpose of validation, and (iv) internal-cross 
validation, which repeats validation process over a sample that is left 
out of the training dataset. Five studies [38,42–45] did not employ 
either internal or external validation techniques, making the developed 
models difficult to generalize and compare with other diagnostic tools. 
Only three out of 16 identified studies [23,36,48] employed both cross- 
validation and testing on an independent set of data. Two studies 
[47,49] tested the models on an independent subset of data. The 
remaining studies developed the ML models using training and internal 
validation techniques. 

The majority of the included studies employed big datasets which 
were highly unbalanced. In medicine, a well-balanced dataset is vital to 
develop a good prediction model [73]. In fact, when the imbalance is 
large, it is hard to build a good classifier using conventional learning 
algorithms. The cost in miss predicting minority classes is higher than 
that of the majority class for imbalanced datasets; this is particularly 
relevant in medical datasets where high risk patients tend to be the 
minority class (e.g., pneumonia cases). Therefore, there is a need of a 
good sampling technique for medical datasets. Among the selected 
studies, only four out of the 16 studies [23,36,40,43] adopted a boot
strapping or oversampling technique to address the problem of unbal
anced datasets. 

Among the selected studies, there are a variety of predictors used to 
develop the machine learning algorithms. Eight studies used a combi
nation of laboratory results and symptoms as their final predictors, with 
only 5 papers using symptoms alone. Symptoms/signs which occurred 
often included: fever (5 studies), temperature (5), abnormal breathing 
(4), cough (3), productive cough (2), dyspnoea (2), absence of runny 
nose (2) and chest in drawing (2). Other population differences are also 
reflected in the final predictors, for example chest in drawing is only 
used in studies concerning childhood pneumonia. This is consistent with 
the known age-specific presentations of the disease [74] and thus 
highlights a potential challenge in production of a general model. The 
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utility of C-reactive protein (CRP) level as a biomarker in classifying 
pneumonia was addressed by 4 studies. As it has been recognised 
already in the literature [13–14], there were some contradictions be
tween studies of its performance as a pneumonia predictor. Naydenova 
et al. [23] and Groeneveld et al. [45] specifically investigated addition 
of CRP to models based on symptoms, vital signs and age and find that 
CRP worsened model performance in diagnosis of pneumonia. It is 
worth noting, however, that both authors described the utility of CRP as 
a beneficial predictor for pneumonia severity and aetiology. Interest
ingly the reference standard of pneumonia in these studies is not the 
same, Naydenova et al. [23] had a subject population of children and use 
clinical evaluation based on WHO and IMCI guidelines, whereas the 
subject population in Groeneveld et al. [45] was adult and their refer
ence was consolidation on X-ray. In contrast to this, Steurer et al. [35] 
and van Vugt et al. [40] found CRP to be a useful predictor. Indeed, 
Steurer et al. [35] found CRP to be the strongest indicator of radio
graphically confirmed pneumonia in adults from a set of mostly symp
tomatic predictors. Together, this highlights the need for further 
investigation of biomarkers as candidate features for diagnostic classi
fiers to gain further understanding of the seemingly complex presenta
tion of these levels. Only one study [49] used a combination of 3D CT 
imaging and clinical symptoms via deep learning model (FaNet) to 
detect patients affected by COVID-19 pneumonia. Their experimental 
results illustrated that FaNet achieves fast clinical assessment for 
COVID-19 with an accuracy of 98.28%. The proposed framework con
sisted of 4 modules: encoding for symptoms, feature extraction from CT 
image sequences, fusion, and prediction. They developed a Symptom- 
fused Channel Attention Module to fuse the clinical symptoms and the 
CT image sequences. Finally, the prediction module predicts the clinical 
assessment based on the fused feature. 

Some studies used a combination of many signs or symptoms, even 
though they employed large datasets, the class to predict (i.e., pneu
monia) is often the minority class. According to Foster at al. [67], as rule 
of thumb, for each predictor at least 10 observations and/or patients are 
needed for the event to detect. In the case of some studies, the number of 
predictors overcome the number of patients included in the target 
classes, incrementing the risk of overfitting of the model. 

Comparison of predictors and ML model performance across all 
studies is strictly limited for several reasons: (i) variation in pneumonia 
type/reference standard; (ii) variation in subject population and (iii) 
differential reporting of performance metrics. The overall performance 
AUC varied to 75–99%. However, not all the included studied reported 
AUC measure. Moreover, there is great heterogeneity in performance 
reporting of the diagnostic tools used in the included studied. The 
reference standard to report performance of ML methods is described by 
[75]. The lack of homogeneity among the selected studies in ML 
development and performance reporting were the main reasons of 
conducting a qualitative systematic review as meta-analysis was not 
possible with the available gathered data.  

a. Recommendations when designing and implementing AI tools 

In light of this scenario, recommendations of on how to develop a ML 
method is given to researchers to improve the efficacy of AI tools to 
automatically detect pneumonia or any other respiratory diseases. The 
recommended pipeline is formed by:  

1. Pre-Processing step. For building any ML model, it is important to have 
a sufficient amount of data to train the model. The data is often 
collected from various resources and might be available in different 
formats. Due to this reason, data cleaning and pre-processing become 
a crucial step, which include: impute the missing values, encode 
categorical variables (in case of symptoms), normalize and/or scale 
the data if required. Moreover, clinical information and reference 
standard results should be available to the performer of the ML 

model. More important, explanations on how indeterminate refer
ence standard results were handled should be provided.  

2. Dataset splitting. In the case where the dataset presents an adequate 
number of instances, the whole dataset can randomly be split per 
subjects and or instances into two or more sub-folders. For instance, 
one folder (usually the 20 % of the total data) can be used for feature 
selection; a second folder 2 (usually the majority of the data, 60%) 
can be used for training and validating the classification models; 
finally, a third folder (e.g., 20 % of the data) is adopted to evaluate 
the performance of the developed classification models. In the case of 
a highly imbalanced dataset, each folder should contain the same 
proportional percentage of minority instances and techniques to 
address this problem should be employed (e.g., SMOTE, over
sampling, under sampling or boosting).  

3. Identifying features to predict the target. The number of features used in 
a machine learning algorithm should be strongly limited by the 
number of subjects and or instances presenting the event to detect in 
each folder, in order to minimise the risk of over-fitting. However, 
selecting the minimum set of features using the same folder utilised 
to train the machine learning algorithm can reduce the general
isability of the final decisional algorithm. Researchers using manual 
feature selection based on clinical usage or more advanced tech
niques to reduce the number of features, should always bear in mind 
that the maximum number of features that can be used in the clas
sification process is strongly limited to the number of subjects (i.e., 
belonging to the minority class) presenting the event to detect or 
predict.  

4. Designing the ML Pipeline using the best model. Different ML methods 
can be used to develop classifiers aiming to automatically detect the 
event based on the selected combinations of features. Regarding al
gorithm parameters, they should be tuned during training and 
carefully reported in the study to guarantee the reproductivity of the 
results. The training of the ML methods should be performed using 
cross-validation procedure, which needs to be repeated K times, with 
K equal to or greater than the number of instances belonging to the 
minority class. This procedure needs to be performed for each ma
chine learning method used to develop predictive algorithms.  

5. Predict the target on the unseen data.  
6. Reporting performance according to standards. Moreover, researchers 

are highly encouraged to define the rationale for test positivity cut- 
offs or result categories of the ML method, distinguishing pre- 
specified from exploratory results.  

b. Limitations of the study 

This study has provided several new insights on the existing ap
proaches to predicting pneumonia based on signs and symptoms and the 
aspects that warrant consideration both in the design and implementa
tion phases of the tests and in the reporting of the findings. However, 
several limitations are also outlined. To the authors’ knowledge, there is 
no available and reliable tool for the quality assessment of studies 
incorporating ML, and as a result, the quality of the studies that have 
been found in this area could not be systematically assessed. Second, 
while the medRxiv preprints database was included in the search 
strategy, in order to capture all possible recent contributions addressing 
SARS-COV related pneumonia, the search was conducted using simple 
combinations of search terms due to the limited flexibility of the avail
able search options. Therefore, relevant records in this dataset may have 
been missed. Lastly, we limited our search in the bibliographic databases 
to the last 10 years. This choice was driven a motivation to evaluate the 
recent use of ML techniques. 

5. Conclusion 

This systematic literature review found huge heterogeneity among 
studies using ML to detect pneumonia based on symptoms and signs. 
Many differing study designs, healthcare settings, populations and ML 
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algorithms were used. The most frequently used symptoms as ML fea
tures were fever, temperature, abnormal breathing, and cough. Several 
studies did not follow best practice in their ML methodology, in 
particular during feature selection, model validation, and handling of 
imbalanced datasets. In addition, reporting quality was low for details of 
the reference tests used and characteristics of the study participants 
(severity of disease and alternative diagnoses). However, overall per
formance was high, suggesting there is strong motivation for further 
investigations using ML to improve diagnostic capability of existing CAD 
systems for automatic pneumonia detection. Such systems may 
contribute to improving access to diagnosis for respiratory disease in 
limited-resource settings. This review is limited to recent applications of 
ML (within the past 10 years). In addition, quality assessment of ML 
could not be assessed due to lack of an appropriate validated tool. 
Despite the limitations, this study provides insights on existing ap
proaches to ML based pneumonia detection and provides recommen
dations for future research in how best to develop a ML method for 
effective automatic detection tools with clinical utility. 
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