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A B S T R A C T   

Circadian rhythms modulate physiological and behavioral processes of approximately 24-h periodicity. Alter-
ations in the circadian timing system may lead to cardiovascular, metabolic or neurological diseases, cancers and 
sleep disorders, as well as to disruption of quality of life. Circadian rhythms can be tracked via laboratory tests 
measuring hormones in salivary, urinary or blood samples, which are collected in controlled environments. 
These tests are unsuitable for continuous monitoring in real-life, being expensive and time consuming, producing 
discrete information (i.e., few values per day) and requiring controlled environmental conditions (e.g., exposure 
to light can alter the samples). Thus, there is a need to develop non-invasive methods and tools to track circadian 
rhythms in real-life conditions. 

In this study, 10 healthy participants wore commercial medical-rated (i.e., CE-marked) wearable sensors, 
which continuously measured ECG, skin body temperature and physical activity for two consecutive days. Up to 
10 salivary samples per day were taken and sent to a laboratory for measuring melatonin, which was used as 
proxy for circadian rhythm tracking. 

The results presented in this paper demonstrated that Heart Rate Variability (HRV) measures, physical activity 
and skin temperature changed significantly after the onset of melatonin. The deep-learning model presented in 
this study detected the onset of melatonin with 71 % accuracy, 67 % sensitivity, 75 % specificity and 77 % area 
under the curve (AUC). 

The current study concluded that deep learning could be used to track melatonin-onset in real-life, using 
physiological and behavioral measures monitored via wearable and easy-to-use sensors.   

1. Introduction 

Our inner clock, also known as the biological clock, changes our 
physiology to the different stages of the day, it regulates our behavior, 
hormone levels, sleep, body temperature and metabolism [1]. While 
rhythms with a period of approximately 24 h (i.e., circadian) have been 
known since decades, the clinical relevance of circadian rhythms has 
emerged more recently [2]. Disruptions in circadian clock may have 
serious consequences for our health and mental well-being [3]. For 

example, people, who suffer from chronic chronotype misalignment (e. 
g., shift worker), are more likely to experience cancer, obesity, type 2 
diabetes and coronary heart disease [4,5]. A recent study has also shown 
that youngers with disruption in circadian cycles are more at the risk of 
developing drug and alcohol abuse [6,7], cognitive impairments and 
learning deficits [8]. Several studies have proved that patients with 
significant alterations in circadian cycles are less likely to respond to 
cancer treatments [9–11]. 

The impact of circadian misalignments on our well-being has shifted 
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the attention on investigating new approaches to monitor the state of a 
person’s circadian rhythm in real-time. The development of multisen-
sory wearable devices and artificial intelligence techniques offers un-
precedented opportunities to precisely monitor sleep and circadian 
disruption. This would allow to accurately diagnose and precisely treat 
several pathologies associated with altered circadian function, paving 
the way to personalized medicine. 

In the human body, several hormones can be used as circadian bio-
markers. In particular, melatonin and cortisol are the most studied. The 
cyclic rise and fall of cortisol and melatonin have been used as markers 
of the circadian function [12]. Cortisol secretion follows a distinct 
circadian rhythm, with low circulating levels at sleep onset, beginning to 
increase during the last part of the night, then peaking within 1 h from 
waking, and finally, declining through the day [13]. Melatonin is pro-
duced by the pineal gland during the hours of darkness and it is low 
during day-light hours [14]. Specifically, melatonin patterns is often 
preferred as a circadian marker of internal phase because they are more 
robust to external influences than cortisol [15]. Indeed, food intake and 
activity do not appear to influence the melatonin rhythm, whereas they 
have significant effects on cortisol. By measuring the Melatonin Onset 
(MO), a clearly demarcated event, internal circadian phase position can 
accurately be determined [16]. In particular, the most accurate, 
minimally-invasive, and reliable measure in laboratory setting is the 
Dim Light Melatonin Onset (DLMO) for the assessment of the internal 
phase [17]. DLMO is usually defined as the time during which salivary 
melatonin reaches 4 pg/mL (or when blood melatonin reaches 10 
pg/mL) under controlled light conditions (<20 lx) for at least 2 h. Ac-
cording to the literature, one of the most accurate methods to measure 
the DLMO is the so called “3k” threshold [18]. DLMO is considered as 
the best clinically useful characteristic of the 24 h melatonin rhythm and 
a useful parameter to identify circadian rhythm disorders [19]. How-
ever, DLMO is measured, by definition, under controlled light condi-
tions, resulting rather incompatible for real-life monitoring. 

Melatonin is measured using laboratory tests of salivary, blood or 
urinary samples taken at regular intervals (e.g., every two hours in the 
morning, every hour in the afternoon) [20]. Although laboratory tests 
are very reliable and valid in measuring melatonin and cortisol and 
estimate circadian disruptions, they carry the high burden of taking 
regular samples and performing chromatography and/or mass spec-
trometry analysis which make them less appropriate as a scalable in-
strument [21]. Nonetheless, initial evidence is appearing promising for 
salivary melatonin sampling at home [22]. 

Other methods to assess circadian cycles are based on self-report 
survey or diary instruments, which are more appropriate approaches 
to capture sleep-wake cycles in wide populations, and therefore, indi-
rectly estimating the underlying phase of the circadian rhythms [23]. 
However, self-reported surveys are not as well-suited for individual 
monitoring as sensor-based continuous monitoring over longitudinal 
periods, since they are subjected to the bias of self-reporting and 
repeated subjective measures. 

Several studies have attempted to track circadian rhythms using non- 
invasive physiological signals such as body temperature [24–27], ac-
tivity [28–30] and Heart Rate Variability (HRV) [31–33] via wearable 
sensors. A number of studies found that core body temperature dis-
played a robust and precise circadian rhythm [34]. However, current 
techniques for measuring core body temperature are highly intrusive. 
Other studies [24–26] used less invasive techniques, but they reported 
that skin body temperature was “masked” by a number of variables, 
including sleep, posture, and activity levels [35]. Similarly, HRV mod-
ulation is affected by several factors including posture, physical activity, 
mental stress or emotion [36]. Therefore, more than a single physio-
logical signal is required to precisely determine the circadian phase. 
Thus, several studies [30,31,37–42] have attempted multidimensional 
circadian monitoring via wearable sensors. Most of those studies 
measured dim light melatonin onset (DLMO), skin body temperature, 
motor activity and light exposure in laboratory studies. 

Although laboratory studies have a high-level control of the settings, 
they lack the fundamental exposures to the real-life environment. 

In a previous study [43], preliminary analysis showed promising 
results in real-file settings to automatically detect high or low cortisol 
levels via HRV analysis and temperature data. These results provided 
encouragement that wearable devices may certainly be valuable to 
monitor circadian rhythm in real-time. 

Here, we used a combination of synchronous monitoring of Heart 
Rate, tri-axial activity and posture, as well as proximal and distal limb 
skin temperature, with modern deep learning method, Recurrent Neural 
Networks (RNN), in order to estimate precisely, dynamically and non- 
invasively the internal circadian phase (melatonin onset) in free-living 
conditions. If successful, this approach could allow the estimation of 
the internal circadian phase over consecutive 24 -h spans from passive 
biosensor continuous monitoring, thus avoiding repeated biological 
sampling. 

Since we wanted to investigate circadian cycles in real-life environ-
ment, melatonin onset was measured in real-life settings and partici-
pants were exposed to natural levels of light in line with their normal life 
habits. Several other studies have also shown that measuring melatonin 
onset in real-life condition can help estimating the effect of night shifts 
in circadian cycles [44–47]. 

2. Methods 

2.1. Participants 

A group of ten healthy volunteers with no medical history of circa-
dian sleep alteration was recruited in the study. During a baseline 
assessment and briefing session, participant’s information was gathered. 
Age, height, weight, general health status and use of relevant medica-
tions to the study were recorded. The participants did not report a his-
tory of pathological conditions or consumption of any medication 
throughout the course of the study, which could alter the acquired 
physiological signals and circadian cycles. For female participants in 
fertile age, the phase of menstrual cycle was also recorded. All partici-
pants had a healthy BMI (between 19.2–23.9). 

Participants were asked to complete the Pittsburgh Sleep Quality 
Index (PSQI) questionnaire [48]. The PSQI questionnaire is designed in 
nineteen self-rated questions related to sleep quality, sleep latency, sleep 
duration, sleep efficiency, and sleep disturbances, use of sleeping 
medication and daytime dysfunction. It provides a global score to con-
trol sleep-disturbance. None of the participants reported any 
sleep-disturbance. 

Participants were also asked to complete a daily sleep diary [49], 
designed to gather information about their daily sleep pattern, as well as 
a daily food and activity diary. The latter was given to the participants to 
record activity, food, caffeine and alcohol intake through the day as 
circadian rhythms and metabolism are intimately linked [50–52]. 

Ethical approval for this study was granted by the Biomedical and 
Scientific Research Ethics Committee of the University of Warwick (ref. 
REGO-2018− 2205). The study assured anonymity and no side effects or 
possible disadvantages for the participants. All participants were care-
fully instructed and signed an informed consent form prior to the ex-
periments. A fixed fee was given to the participants. All methods were 
performed in accordance with the ethical approval and in the respect of 
all the relevant guidelines and regulations. 

2.2. Study protocol 

A schematic outline of the study protocol is shown in Fig. 1. During 
the briefing session, the participants were instructed about the study 
protocol and they filled in a general questionnaire on demographic and 
health history and the PSQI survey. After baseline assessment, partici-
pants underwent continuous monitoring for two consecutive days. The 
participants were asked to wear wearable sensors from the night before 
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the start of the experiments (Day 1) and remove them the night after the 
second day (Day 2). 

2.3. Wearable sensors 

The participants’ physiological monitoring was performed using the 
Zephyr BioHarness™ 3.0 (Medtronic, Inc., Annapolis, MD, USA). and 4 
iButton® sensors (Maxim/Dallas Semiconductor Corp., USA) as shown 
in Fig. 2. They were instructed to remove the sensors only in case of 
bathing, showering, or swimming and to wear them as soon as possible. 
The BioHarness™ was worn on the chest, below the sternal notch using 
2 disposable gel electrodes. The Zephyr is a wireless patch device that 
measures tri-axial trunk acceleration (sampling frequency of 100 Hz) 
and one-lead electrocardiogram (ECG) signals (sampling frequency of 
250 Hz). The resolution of this device is of 12 bits per sample. The 
Zephyr also provides information, based on internal algorithms, of 
user’s activity levels, and posture based on the tri-axial trunk accelera-
tion signals. This Zephyr BioHarness™ has been widely used in scientific 

studies proving to be a valid and reliable device to monitor heart rate, 
acceleration and posture during low and moderate physical activity 
levels [53,54]. 

Four iButtons® were positioned using medical tape on the right and 
left infraclavicular areas (proxy for proximal skin temperature [24]) and 
left and right of medial metatarsal area (proxy of distal skin temperature 
[24]). The body temperature was estimated as average of the values 
measured at the medial metatarsal area (aka, distal temperature) and at 
the infraclavicular areas (aka, proximal temperature) each 10 min. The 
Thermochron iButton® (DS1921 H) has been used extensively with 
human to measure temperature data and also used as a circadian marker 
[24,55,56]. It can measure temperatures from +15 to +46 ◦C with an 
accuracy of ±1 ◦C at a 0.125 ◦C resolution [24,55]. 

2.4. Salivary samples 

The participants were asked to continually wear the sensors and to 
collect saliva for melatonin assessment. Melatonin is considered a 
benchmark for internal circadian phase in this study. Participants were 
asked to collect up to 10 samples per day according to the following 
protocol: one sample on waking; as soon as they woke up in the morning 
and were able to provide a sample; 3 h after giving the first sample; at 4 
pm; at 6 pm; at 7 pm; at 8 pm; at 9 pm; and every hour before going to 
sleep. Participants were asked to gently chew a cotton swab of Salivettes 
for 60 s. Immediately after collection, all specimens were stored in a 
freezer. 

Subjects were instructed to avoid foods with high sugar or acidity, or 
high caffeine beverages before collecting a salivary sample; they were 
also invited to not eat a major meal 30 min before the sample collection. 
Before each saliva collection, the subjects had to rinse their mouth with 
water to remove food residue and waiting at least 10 min after rinsing to 
avoid sample dilution. They were instructed not to brush their teeth 
before collecting sample; and to abstain from eating and drinking for 5 
min prior to sample collection. 

Saliva collection was performed with the Salivette ® (Sarstedt, 
Leicester, UK) collection kit. An amount of 1-mL of saliva sample was 
pipetted onto a Salivette® cotton swab and then into clear sterile plastic 
tubes [57,58]. 

A competitive immunoassay based on capture antibody technique 
was used to analyze the melatonin levels and were performed in 
duplicate employing commercially available kits (Bühlmann Labora-
tories AG). Intra-assay precision (within-run) was 12.6 %. The intra- 
assay precision was calculated from the results of four different saliva 
samples within the standard range, measured 10 times in duplicate in a 
single run. Inter-assay precision (run-to-run) was 22.9 %. The inter- 
assay precision was calculated from the results of 17 independent runs 
with 5 samples within the standard range. The detection limit of the 
assay was 0.5 pg/m [59]. 

Fig. 1. Study protocol. Circadian monitoring was performed using a wearable device that records activity and ECG signals and 4 body wearable temperature sensors. 
Circadian assessment was performed using physiological monitoring (activity, posture, skin temperature, ECG) via wearable sensors and melatonin hormone levels 
via saliva collection. 

Fig. 2. Experiment sensors’ setup. The BioHarnessTM was worn on the chest, 
below the sternal notch using 2 disposable gel electrodes. Four iButtons® were 
positioned using medical tape on the right and left infraclavicular areas (proxy 
for proximal skin temperature) and left and right of medial metatarsal area 
(proxy of distal skin temperature). 
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2.5. Diaries 

During the study, subjects were instructed to complete the Consensus 
Sleep Diary [49] every morning immediately after leaving their bed. 

They were also asked to complete a food and activity diary to record 
what they ate and any activity they undertook during the day. They had 
to report what kind of activity they performed, for how long and the 
estimated intensity. They were also asked to record any food, snack or 
drink they consumed during the day, recording the portion size in 
household measures (e.g., slices of bread, tablespoons of pasta, mugs of 
milk, cup of coffee) as well as the type of food and cooking method (e.g., 
grilled, fried, boiled). 

Participants were invited to maintain their regular sleep schedule 
and habits as closely as possible (i.e., no intervention was applied) and 
not to limit their activities or to change their behavior in any way during 
the monitoring time. 

2.6. Data processing 

Data collected via the sleep diary, BioHarness™, iButtons® and 
saliva were processed as reported in the next sections in order to 
compute a set of measures (see Supplementary Table 1). 

2.6.1. Sleep diary and PSQI measures 
Following [53], five sleep measures were obtained from the sleep 

diary as reported in Supplementary Table 1. 
The Pittsburgh Sleep Quality Index (PSQI) is an efficient self-report 

questionnaire measuring sleep quality and patterns. The PSQI gives an 
estimate of sleep quality (“poor” or “good” sleep) based on seven specific 
indicators, as reported in [48]. The participants self-rated the indicators 
using the Likert Scale [60]. A global sum, across all the measures, of “5” 
or greater indicates a “poor” sleeper and vice versa. 

2.6.2. Heart rate variability measures 
Heart rate interbeat intervals (RR) were extracted from ECG re-

cordings using an automatic QRS detector, available in the Kubios 
toolkit [61], based on the Pan–Tompkins algorithm [62]. The automatic 
detection of QRS was supported by visual inspection and manual 
correction. A quality check was carried out using the NN/RR ratio as 
explained in [63]. The RR interval time series were segmented into 
5-min consecutive windows with no overlapping. The HRV analysis was 
performed on 5-min excepts using Kubios software [64]. Spectral anal-
ysis was performed by a non-parametric based on Welch’s periodogram, 
which has the advantage of low computational cost. A total of 23 HRV 
features were extracted and examined (see Supplementary Table 1). 

2.6.3. Activity level 
Activity level signals are reported with a frequency of one sample per 

second. They were decimated to one sample per 5 min by lowpass filter. 
The lowpass filter used was the Chebyshev Type I filter with a cutoff 
frequency of 0.8/decimation factor, and a passband ripple of 0.05 dB. 
Data processing was performed using in-house written scripts in Mat-
lab2019a (The Mathworks, Inc., Natick, MA, USA). 

2.6.4. Temperature measures 
Distal and proximal skin temperatures were measured every 10 min. 

Distal skin temperature was estimated as the mean of all measurements 
collected from two ankle temperature sensors. Proximal skin tempera-
ture was estimated as the mean of all measurements from the two 
clavicle temperature sensors. Distal and Proximal temperature were 
linear interpolated and then resampled every 5 min. The margin of the 
interpolation error was insignificant. 

2.6.5. Salivary melatonin 
Melatonin values were linearly interpolated for each subject between 

one hour before the first sample and one hour after the last sample of the 

day. Melatonin profiles were then resampled every 5 min, i.e., one 
sample for every 5-min window. 

In this study, melatonin onset (MO) was calculated and used as a 
proxy to determine internal circadian phase. MO was calculated using 
the “3k” threshold [18] in real-life light conditions. 

Melatonin profiles were excluded if the profiles were of such irreg-
ular pattern that MO could not be reliably determined; if two or more 
saliva samples were missing and if melatonin profiles did not have the 
six low daytime points required for the calculation of the 3k method. 

Once the MO was identified, all extracted physiological and behav-
ioral measures were classified into two classes: before and after MO. 

2.7. Dataset preparation 

HRV measures, activity level, distal and proximal temperature and 
melatonin levels were synchronized taking as reference the HRV 
segment windows. An example of raw data time-based plots for skin 
temperature, posture, activity, HR and melatonin levels is presented in 
Supplementary Fig. 1. 

For each participant, measures were extracted every 5-min for Day 1 
and Day2, using data from one hour before the first saliva sample was 
taken and continuing until one hour after the last saliva sample was 
collected. The dataset had fewer than 20 % segments with missing data, 
due to sensor removals or motion artifacts. Excerpts with missing data 
were excluded. Moreover, melatonin profiles that showed irregular 
patterns or missing values, suggesting that the samples were contami-
nated or alternated [18,22], were excluded. 

The complete dataset comprises HRV measures, activity level, distal 
and proximal temperature measures, and melatonin levels acquired 
from 10 participants that wore the wearable sensors and collected saliva 
for two consecutive days. 

Accordingly (eq. 1), the dataset contained entries taken every 5 min: 

dataset =
{

HRVi, PhysicalActivityi,BodyTemperaturei, Ci

}
(1)  

Where HRVi is the vector of the 23 HRV measures computed over 5-min 
excerpts of ECG data; PhysicalActivityi is the averages of the physical 
activity over the same 5 min interval; and BodyTemperaturei is the body 
temperature in the same 5 min interval, obtained as linear interpolation 
of the skin body temperature measured every 10 min; Ci is the binary 
variable accounting for the “class” of the entry in terms of melatonin 
value in the 5 min segment (i.e., C = 0 before MO; C = 1 after the MO). In 
fact, all 5-min segments from one hour before the first saliva sample was 
taken until the identified MO, were classified as ‘before’ MO; whereas all 
the 5-min segments after the identified MO were classified as ‘after’ MO. 
The 5-min segments identified as MO were not classified and were 
excluded from the following analysis. Therefore, each 5 min segment “i” 
(i.e., dataset entry) was labelled with a binary value of 0 or 1 (“class”) 
according to its timestamp (i.e., before or after the identified MO). In 
total, 2068 segments, of which 318 segments included in the class 1 (i.e., 
after the identified MO), were investigated from a total of 10 subjects 
over 2 days. 

2.8. Statistical analysis 

For all the participants, the median (MD), standard deviation (SD), 
25th and 75th percentiles (i.e., Q1 and Q3 respectively) of each feature 
were calculated to describe their distribution before and after MO. 

Shapiro–Wilk test was used to determine the normality of features 
[65]. In order to identify measures significantly changing at MO, 
non-parametric test such as Wilcoxon signed-rank test was used since 
most of the features (>90 %) were non-normally distributed. A p-value 
less than 0.05 was considered significant. Holm’s correction was used 
due to repeated measures. 

Any increase or decrease in the median of one of the extracted 
measures before and after MO was reported, using the following 
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convention [63,66]:  

• Two arrows, ↓↓ (or ↑↑) were used to report a significant (p-value<
0.05) decrease (or increase) of measure after MO;  

• One arrow, ↓ (or ↑) was used to report a non-significant (p-value 
>0.05) decrease (or increase) of measure after MO. 

Variations in sleep measures between Day 1 and Day 2 were inves-
tigated in order to understand whether the participants experienced 
sleep-wake disruption during the study. 

Variation in HRV, activity and temperature measures before and 
after MO were investigated via Wilcoxon signed-rank test over two days. 

2.9. Deep learning 

Recurrent neural networks (RNN) was chosen as deep learning 
method in this study. RNNs are often used for time-series classification 
[67]. RNNs have a great advantage compared to other methods, they 
greatly reduce the total number of parameters that need to be learnt as 
they allocate the same model parameters across all time steps. Specif-
ically, we adopted a Long Short-Term Memory (LSTM) [68]. The aim of 
this work is to investigate whether LSTM-based networks can detect the 
MO. 

The architecture consists of 7 layers: a sequence input layer followed 
by 3 LSTM layers with 200, 180 and 150 hidden units respectively, each 
followed by a ReLU [27] activation function. The network ends with a 
fully connected layer and the final output is obtained from a softmax 
layer. The final dataset was highly unbalanced due to the more avail-
ability of data before the MO than after MO. Therefore, due to the highly 
unbalanced dataset a custom weighted classification output layer with 
weighted cross entropy loss was used. No pooling operation was used 
except at 0.2 rate dropout after each LSTM + ReLU layer (Fig. 3). 

The optimization function used during the training was Ada-
mOptimizer [69] with an initial learning rate of 2e-2. Batch size was set 
to 27. The maximum number of training steps was set to 300. Repeated 
cross-validation was performed to track the training process, to account 
for overfitting and to obtain unbiased estimates [70,71]. An early 
stopping criterion was implemented, with training halted, if the AUC on 
the validation did not improve during 30 optimization steps. Weighted 
cross entropy was used as loss function. The network was implemented 
in Matlab2019a. 

2.9.1. Feature selection 
Feature selection is an essential step to reduce the amount and/or 

dimensionality of the data [66,72]. The choice of feature was settled a 
priori, as also recommended in [73], to reduce at minimum the impact 
of feature selection method on standard errors of the model parameters 
and bias of the estimates. There are many methods to carry out feature 
selection. One rigorous approach is the redundancy analysis. This in-
volves removing features that are easily predicted from other features, 
using flexible parametric additive regression models [72]. A robust 
redundancy algorithm was applied as described in [72]. Features are 
dropped in a stepwise fashion, removing the most predictable feature at 
each step. The process continues until there are no features in the list of 
predictors that can be predicted with an adjusted R2 set to 0.8. The 
remaining features were used to develop the model. Feature selection 
was performed using R software (version 3.03, Austria), Hmisc (v4.4− 1) 
package [74].” 

Moreover, the maximum number of features used in the develop-
ment of the model was selected according to the rule that for each 
predictor variable at least 10 occurrences are needed to produce a 
classifier with a reasonable predictive power [73]. 

2.9.2. Training and validation 
The final dataset comprised of 2068 segments, of which 318 seg-

ments included in the class 1 (i.e., after the identified MO), were 
investigated from a total of 10 subjects over 2 days. 100 repeated 10- 
cross-validation method was used to validate the model. This simply 
involves repeating the cross-validation procedure multiple times and 
reporting the average result across all folds from all runs [72]. 

Binary classification performances were computed as reported in 
[63,66,75]. The model performance were obtained for the optimal 
operating point (OOP) on the ROC curve as calculated by the MATLAB 
perfcurve function that relies on a previously described cost-function 
curve analysis [76]. Future studies should consider the OOP based on 
the clinical application and the intended use of the model. 

3. Results 

3.1. Participants’ baseline characteristics 

In this study, 10 healthy volunteers were enrolled. The subjects (5 
females and 5 males) were 29 (5.6) years old, height of 168.6 (0.07) cm, 
weight of 61.9 (10. 2) kg, body mass index (BMI) between 19.5 and 24.2, 
PSQI score of 4.6 (2.7) and sleep duration of 7 (2) hours during the past 
month. 

3.2. Statistical analysis 

In Table 1, sleep diary measures are reported as median (MD), 25th 
and 75th percentiles for Day 1 and Day 2; the last column shows the p- 
values from two-tailed paired Wilcoxon signed-rank tests. 

No significant differences were recorded in the sleep diary measures 
between Day 1 and Day 2 for the 10 healthy subjects. We concluded that 
none of the participants suffered from sleep-awake disruption during the 
study. 

The HRV, temperature and activity measures before and after of all 

Fig. 3. Deep learning architecture. LSTM: Long Short-Term Memory.  

Table 1 
Sleep diary measures.   

Day 1 Day 2   

MD Q1 
25th 

Q3 
75th 

MD Q1 
25th 

Q3 
75th 

p- 
value 

Sleep onset 
latency (SOL) 
(min) 

17.5 11.2 27.5 12.5 6.2 18.7 0.31 

Wake after sleep 
onset (WASO) 
(min) 

10 6.25 18.75 5 2.5 12.7 0.90 

Total sleep time 
(TST) (H) 

7.3 7.1 8.1 8.3 8.0 8.8 0.08 

Sleep efficiency 
(SE) (%) 

88 
% 

82 % 94 % 86 
% 

77 % 98 % 0.47 

Subjective sleep 
quality (SSQ) 

3 2 2 4 3 3 0.08 

MD = Median. Q1 = First quartile. Q3= Third quartile. P-values from Wilcoxon 
signed-rank tests with Holm’s correction. 
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the participants were analyzed over 2 days. Measures median (MD), 
standard deviation (SD), 25th and 75th percentiles and p-values are 
reported in Table 2. 

Three of 20 melatonin profiles were excluded because they were of 
such irregular pattern that these internal circadian phase markers could 
not be reliably determined, suggesting that the samples were contami-
nated or alternated [18,22]. One, out of the three melatonin profiles, 
was excluded as two saliva samples were missing. Two, out of three 
melatonin profiles, were excluded as they did not have the six low 
daytime points required for the calculation of the 3k method on the 
two-hours melatonin profiles. 

As reported in Table 2, 23 out of 26 measures changed significantly 
‘before and ‘after’ MO. Regarding HRV measures in time domain, Mean 
HR (Mean Heart Rate), Std HR (Standard deviation Heart Rate), Max HR 
and Min HR showed lower values ‘after MO’, whereas NN50, pNN50 and 
RMSSD (square root of the mean squared differences) increased. 

Regarding HRV measures in frequency domain, LF (low frequency) 
and LF/HF (low/high frequency) ratio showed lower values after MO 
than high frequency and total power (as shown in Table 2), demon-
strating an increase of the parasympathetic branch and a withdraw of 
the sympathetic branch ‘after MO’, reflecting a parasympathetic domi-
nance [77]. 

Regarding non-linear HRV measures, in Table 2 Poincare standard 
deviations, SD1 and SD2, and Sample entropy showed increased values 
after MO. Whereas the ratio of SD2 and SD1 and approximate entropy 
showed a decreased value after MO, supporting parasympathetic 
dominance. Temperature and activity measures reported a decrease 
after MO. 

3.3. Deep learning 

3.3.1. Feature selection and performance in training and validation 
Features were selected on a priori by applying redundancy analysis, 

as described in [72]. The final combination of features used to develop 
the model was Min HR, Max HR, LF peak, HF peak, LF power, HF power, 
SD2/SD1, Approximate Entropy, Proximal Temperature and activity. 

Table 3 presents the performance of the model during training and 
validation. 

The ROC curve for the model is shown in Fig. 4. 

Table 2 
Measure variations before and after the rise of MO.   

Before MO After MO    

MD SD Q1 25th Q3 75th MD SD Q1 25th Q3 75th P-value Trend 

Mean HR (1/min) 71.975 14.797 64.094 84.174 67.553 13.246 57.760 76.005 <0.001 ↓↓ 
Std HR (1/min) 4.885 1.663 3.969 6.136 4.481 2.183 3.408 6.112 <0.001 ↓↓ 
Min HR (1/min) 58.855 10.964 53.050 67.393 55.084 9.211 47.767 61.859 <0.001 ↓↓ 
Max HR(1/min) 94.944 18.544 84.104 108.362 87.140 20.066 76.152 97.260 <0.001 ↓↓ 
RMSSD (ms) 0.043 0.022 0.033 0.057 0.050 0.032 0.039 0.077 <0.001 ↑↑ 
NNxx 69.000 44.174 39.000 103.000 85.000 53.263 48.000 125.833 <0.001 ↑↑ 
pNNxx (%) 19.196 15.230 9.535 31.405 23.867 20.623 13.821 43.116 <0.001 ↑↑ 
LF peak (Hz) 0.083 0.026 0.060 0.100 0.077 0.027 0.053 0.097 0.04 ↓↓ 
HF peak (Hz) 0.173 0.062 0.157 0.237 0.212 0.067 0.160 0.280 <0.001 ↑↑ 
LF power (ms2) 1862.538 1520.791 1114.313 2850.406 2040.830 2459.993 972.472 3469.584 0.60 ↑ 
LF power (log) 7.530 0.738 7.015 7.955 7.621 0.905 6.880 8.152 0.49 ↑ 
LF power (nu) 76.134 12.562 67.239 83.152 71.462 18.342 57.625 81.914 <0.001 ↓↓ 
HF power (ms2) 565.884 1130.287 309.155 973.187 743.972 1708.266 380.613 1633.389 <0.001 ↑↑ 
HF power (log) 6.338 0.913 5.732 6.881 6.612 1.033 5.942 7.398 <0.001 ↑↑ 
HF power (nu) 23.747 12.523 16.802 32.686 28.444 18.300 18.035 42.326 <0.001 ↑↑ 
LF/HF 3.218 2.518 2.062 4.949 2.519 2.811 1.362 4.542 <0.001 ↓↓ 
Total power (ms2) 2852.652 2451.870 1695.762 4387.880 3628.528 3615.313 1780.233 5755.863 <0.001 ↑↑ 
Total power (log) 7.956 0.735 7.436 8.387 8.196 0.865 7.484 8.658 <0.001 ↑↑ 
SD1(ms) 0.031 0.016 0.023 0.040 0.035 0.022 0.027 0.054 <0.001 ↑↑ 
SD2 (ms) 0.071 0.022 0.056 0.085 0.077 0.029 0.059 0.096 <0.001 ↑↑ 
SD2/SD1 2.309 0.569 1.943 2.693 2.085 0.574 1.668 2.450 <0.001 ↓↓ 
ApproxEntropy 1.101 0.090 1.045 1.147 1.076 0.117 0.994 1.147 <0.001 ↓↓ 
SampleEntropy 1.507 0.307 1.283 1.701 1.576 0.372 1.378 1.754 0.01 ↑↑ 
Proximal Temperature (C) 34.5 0.94 34.0 35.1 34.3 0.8 33.7 34.8 <0.001 ↓↓ 
Distal Temperature (C) 31.9 1.9 30.4 32.8 31.8 2.3 30.6 33.5 0.55 ↓ 
Activity (g) 0.06 0.08 0.02 0.12 0.03 0.08 0.01 0.09 <0.001 ↓↓ 

MD = Median. Q1 = First quartile ; Q3= Third quartile. P-values from Wilcoxon signed-rank tests with Holm’s correction. Trend: ↓↓ (↑↑): significantly lower (higher) 
after MO (p < 0.05), ↓(↑) lower (higher) after MO (p > 0.05). 

Table 3 
Model Performance.   

ACC SEN SPE PPV NPV Error 
Rate 

AUC (CI:95 
%) 

Training & 
Validation 

71 
% 

67 
% 

75 
% 

55 
% 

74 
% 

0.19 77 [78–81] 
% 

ACC: Accuracy; SEN: Sensitivity; SPE: Specificity; PPV: Positive predictive value; 
NPV: Negative predictive value; AUC: Area Under the Curve; CI: Confidence 
Interval. 

Fig. 4. ROC curve estimated on repeated cross validation.  
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4. Discussion 

This study investigated the temporal associations between multiple 
physiological circadian rhythms which can be easily monitored using 
non-invasive wearable sensors, in order to accurately identify the time of 
melatonin onset (obtained from saliva) in real-life settings using deep 
learning algorithm. Our primary aim was met, as our results demon-
strated that the patterns of HRV, physical activity and skin temperature 
allowed us to precisely and reliably determine the MO in free-living 
conditions (accuracy >70 %). 

Thus, the statistical analysis showed that physiological and behav-
ioral measures presented a generally depressed trend soon after the MO. 
Although direct comparison with existing literature is not straightfor-
ward, as we could not find other studies with a similar protocol sys-
tematically investigating HRV, body temperature and activity 
benchmarked with melatonin onset in real-life over two consecutive 
days, our results are consistent with previous findings using a single 
rhythm. 

Regarding body temperature, it was found that proximal and distal 
skin temperatures showed a significant decrease after the rise of mela-
tonin, hence, confirming that circadian rhythms in melatonin levels are 
strictly associated with body temperature. Several studies [24–26,78] 
have already demonstrated that body temperature declines as melatonin 
rises, as also confirmed in this study. 

Regarding behavioral measures, our results demonstrated that a 
systematic decrease in activity levels is common after a rise in melatonin 
levels. These results confirmed that activity level shows a robust circa-
dian pattern [30], reinforcing the idea that motor activity is generally 
high during the day and decreases during the evening [28–30], when a 
rise of melatonin levels is expected. 

As far as HRV measures are concerned, only three studies [31–33] 
investigated how HRV behaves as marker of circadian cycles, using as 
benchmark either salivary or urinary melatonin. According to the 
existing literature, the present data demonstrated the existence of robust 
endogenous circadian variations in HR and HRV. In particular, a sig-
nificant increase in High Frequency (HF) and a significant decrease of 
Low Frequency (LF), which are strongly associated with para-
sympathetic and sympathetic activity respectively, was recorded after a 
rise of melatonin levels. According to other studies [31–33], an increase 
of parasympathetic modulation of the heart is concurrent with the peak 
of melatonin excretion. The results reported in this paper confirmed and 
expanded these results, as we demonstrated that other HRV measures in 
time and frequency domain show also similar trends. To the best of the 
authors knowledge, none of the studies investigated the behavior of 
non-linear HRV measures to describe circadian cycles. Regarding 
non-linear HRV measures, all five non-linear HRV measures calculated 
in this study changed significantly following a rise of melatonin levels. 
In particular, the ratio of SD2 and SD1 and approximate entropy showed 
a decreased value after the rise in melatonin, supporting the findings of 
parasympathetic dominance in this phase. Indeed, this study has shown 
that HRV follows a circadian cycle [32,33,79,80]. In fact, the synergy 
between the sympathetic and parasympathetic nervous systems changes 
throughout the day, and this is reflected in HRV data as a modulation in 
the length of RR intervals and in the spectral power. 

Thus, our findings are consistent with previous reports on each in-
dividual rhythm assessed with signals from wearable biosensors, but, for 
the first time, we integrated the physiological insight from each of them 
into a coherent prediction of melatonin onset, an indicator of the 
endogenous circadian clock phase [81], with clinical pertinence. Indeed, 
the identification of the endogenous phase in a seamless (passive remote 
monitoring from wearable multisensors) and dynamic (i.e., from one 
day to the next) way will allow an improved surveillance of a relevant 
biological functions, bearing prognostic and therapeutic potential in 
multiple conditions [82]. Thus, recurrent discrepancies between the 
internal body clock and the external environment, as occurring in jet-lag 
and shift-work, are connected with a negative impact on cardiovascular, 

metabolic and mental health, as well as on cancer [83–86]. In particular 
for cancer, healthier behavioral changes with regards to the sleep-wake 
schedule and the exposure to synchronizing cues, which would derive 
from an accurate estimation of the internal phase, could provide novel 
empowering intervention opportunities to tackle frequent and clustering 
general complaints such as fatigue, anorexia, insomnia or mood disor-
ders, which have been shown to be associated with circadian alterations 
[87–90]. In this pilot study, we preferred as the main endpoint MO, 
rather than the DLMO, which is more commonly used in physiological 
studies. The main reason for this pragmatic choice was due to the fact 
that we aimed to detect the melatonin onset in real-life setting from 
physiological signals collected in a free-living environment. Any limi-
tation in light exposure, physical activity or sleep patterns would have 
impacted on the relevance of our approach for clinical implementation, 
as well as on the generalizability of our findings. The DLMO remains the 
accepted physiological gold-standard for determining the endogenous 
phase in controlled conditions. However, our results suggest that MO is 
sufficiently accurate and temporally coherent with other circadian 
physiological rhythms for clinical use in longitudinal monitoring of 
patients. 

In fact, the statistical analysis demonstrated that most measures 
investigated in this study are coherently depressed (i.e., lower mean 
value and standard deviation) after the onset of melatonin. In order to 
estimate the extent of which these changes could be used to automati-
cally detect the MO, we trained and tested an automatic binary classifier, 
which achieved promising results: 71 % accuracy rate, 67 % sensitivity 
rate, 75 % specificity rate and 77 % AUC. The classified employed 10 
measures, combining proximal skin temperature, activity levels with 
HRV features in the time (Min HR, Max HR), frequency (LF peak, HF 
peak, LF power, HF power,) and non-linear (SD2/SD1, Approximate 
Entropy) domains. The novelty factor lies in the use of deep learning 
methods to combine physiological signals for the detection of the 
melatonin-onset. LSTM-based networks method was chosen because is 
often used for time-series classification [67], and greatly reduce the total 
number of parameters that need to be learnt. Moreover, its performance 
was higher when compared with more classical machine learning 
techniques. In fact, four most common used ML methods such as Naïve 
Bayesian, KNN, Decision trees and Linear Discriminant analysis, were 
trained and validated (with 100 repeated cross validation) on the same 
dataset. As reported in the Supplementary Table 2, the AUC of ML 
methods are lower than the DL method employed in the manuscript. Due 
to the early stage of our research, and considering our population, we 
decided to compare these models by investigating the AUC values. 
Readers should consider that depending on the intended clinical use of 
future models, high sensitivity for screening and high specificity for 
diagnosis may be preferred [91,92]. However, this will depend on the 
future applications of these models, or similar ones, in clinical settings. 

Previous studies [31,39,40] developed a model to detect salivary 
melatonin phase, but none of these employed a binary classification to 
detect the rise of the melatonin, therefore, our results are not directly 
comparable with the existing literature. The choice of investigate the 
problem as binary classification is mainly due to the fact that this is a 
novel approach. Further models will be investigated to precisely detect 
salivatory melatonin phase. 

The results achieved in this study are promising, although the cur-
rent study is affected by some limitations that the reader should 
consider. First, our sample size was rather limited, although multidi-
mensional longitudinal data for each subject was obtained; hence, 
further studies enrolling more subjects are required in order to confirm 
the general validity of our findings regarding the automatic detection of 
melatonin onset. Moreover, further investigation will be scaled on a 
week monitoring as individual’s typical circadian cycle could not be 
fully captured by two days monitoring. Additionally, ROC analysis will 
be also used to select the optimal threshold under a variety of clinical 
circumstances, balancing the inherent trade-offs that exist between 
sensitivity and sensitivity [93]. Second, melatonin is usually measured 
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under strict light control [94]; however, in this study light intensity was 
not controlled for melatonin to simulate real-life environment. There-
fore, we cannot claim whether there were critical effects of light on 
melatonin secretion. Nevertheless, if the timing of the melatonin rise 
was affected by light in the evening then there should have been sig-
nificant delays in the melatonin onsets compared to HRV pattern, which 
has shown in different studies to follow the circadian cycle [31–33]. This 
clearly was not the case. Participants were exposed to natural levels of 
light during their normal daily activities and the individual melatonin 
profiles remained moderately consistent each evening. An environ-
mental time signal (light) would enable to compare our model more 
precisely with existing literature. Wearable light sensors could be used 
[95]. Third, although this approach would be useful for prognosis and 
therapeutic applications for circadian misalignment., it has not been 
validated in cases of circadian misalignment, or in clinical populations. 
Further clinical trial will be conducted to understand the value of this 
approach in patients suffering from circadian misalignment or in in-
stances when acute complications (e.g., infections, hospital admissions) 
or iatrogenic interventions (e.g., surgery, systemic anticancer treat-
ments) could induce alterations in circadian function or in its phase 
angle over prolonged time. 

5. Conclusions 

The current study suggests that artificial intelligence can be used to 
track endogenous clock phase alongside circadian rhythms patterns 
using physiological and behavioral measures monitored via wearable 
and easy-to-use sensors. This passive continuous monitoring approach 
could drastically reduce or eliminate altogether the need for repeated 
biological sampling in longitudinal studies yet maintaining the provi-
sion of actionable insight into the endogenous circadian phase in free- 
living real-life conditions, as occurring in patients with acute and 
chronic illnesses whose course is impacted by circadian 
physiopathology. 

Large-scale trials in combination with high-level signal processing 
and machine learning methods are now needed to generalize our results 
and confirm their clinical pertinence in surgical and oncological 
sciences. 

Our current findings indicate that HRV, body temperature, physical 
activity and MO changed consistently over a day. The results confirmed 
the presence of robust endogenous circadian variations in HRV, skin 
body temperature and activity. Most of the measures investigated 
changed significantly after the identification of melatonin onset in real- 
life scenario, which can be considered a reliable marker to detect in-
ternal circadian phase and longitudinally screen for circadian 
alterations. 

An automatic classifier to detect the rise of salivary melatonin was 
trained and tested. The classifier achieved 71 % accuracy rate, 67 % 
sensitivity rate, 75 % specificity rate and 77 % AUC. These results are 
very promising, although further studies are needed to confirm their 
generalizability across a wider population. 
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integrated variable based on thermometry, actimetry and body position (TAP) to 
evaluate circadian system status in humans, PLoS Comput. Biol. 6 (11) (2010) 
e1000996. 

[39] V. Kolodyazhniy, et al., An improved method for estimating human circadian phase 
derived from multichannel ambulatory monitoring and artificial neural networks, 
Chronobiol. Int. 29 (8) (2012) 1078–1097. 

[40] J.E. Stone, et al., Generalizability of a neural network model for circadian phase 
prediction in real-world conditions, Sci. Rep. 9 (1) (2019) 11001, https://doi.org/ 
10.1038/s41598-019-47311-4, 2019/07/29. 

[41] S. Komarzynski, M. Bolborea, Q. Huang, B. Finkenstädt, F. Lévi, Predictability of 
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