210 research outputs found

    The Clinicians’ Skills, Capability, and Organisational Research Readiness (SCORR) Tool

    Get PDF
    A research-active healthcare workforce contributes to improved quality of care. Clinicians may be unaware that they are applying early research skills during their everyday practice. Greater understanding of their level of research attainment may improve their awareness and confidence in their research skills. This article describes the development of the Clinicians Skills, Capability, and Organisational Research Readiness (SCORR) Tool, a simple innovation that assesses and captures research skills and attainment at 1) clinician, and 2) organisational level. The SCORR Tool was initially developed to assess levels of research attainment and to promote discussion during annual appraisals for podiatrists working across secondary and community care in a northern region of England. The levels (1 to 5) of attainment recognise UK Health and Care Professions Council (HCPC) registration requirements for chiropodists/podiatrists (Standards 12 to 14). Following testing and feedback, research levels were adapted (Levels 0 to 5) to accommodate all healthcare professionals (with the exception of doctors and dentists). The SCORR Tool may be used individually by clinicians, or in collaboration with their manager, to better understand the level of research attainment and to prompt discussion to increase research activity. It may also be used across a workforce (e.g. during an appraisal) to understand the organisational research readiness. The SCORR Tool requires additional testing and evaluation to validate it as a tool for use across a variety of organisational environments

    Multicenter phase II study of matured dendritic cells pulsed with melanoma cell line lysates in patients with advanced melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several single center studies have provided evidence of immune activation and antitumor activity of therapeutic vaccination with dendritic cells (DC) in patients with metastatic melanoma. The efficacy of this approach in patients with favorable prognosis metastatic melanoma limited to the skin, subcutaneous tissues and lung (stages IIIc, M1a, M1b) was tested in a multicenter two stage phase 2 study with centralized DC manufacturing.</p> <p>Methods</p> <p>The vaccine (IDD-3) consisted 8 doses of autologous monocyte-derived matured DC generated in serum-free medium with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-13 (IL-13), pulsed with lysates of three allogeneic melanoma cell lines, and matured with interferon gamma. The primary endpoint was antitumor activity.</p> <p>Results</p> <p>Among 33 patients who received IDD-3 there was one complete response (CR), two partial responses (PR), and six patients had stable disease (SD) lasting more than eight weeks. The overall prospectively defined tumor growth control rate was 27% (90% confidence interval of 13-46%). IDD-3 administration had minimal toxicity and it resulted in a high frequency of immune activation to immunizing melanoma antigens as assessed by <it>in vitro </it>immune monitoring assays.</p> <p>Conclusions</p> <p>The administration of matured DC loaded with tumor lysates has significant immunogenicity and antitumor activity in patients with limited metastatic melanoma.</p> <p>Clinical trial registration</p> <p>NCT00107159.</p

    Oral vitamin B(12 )therapy in the primary care setting: a qualitative and quantitative study of patient perspectives

    Get PDF
    BACKGROUND: Although oral replacement with high doses of vitamin B(12 )is both effective and safe for the treatment of B(12 )deficiency, little is known about patients' views concerning the acceptability and effectiveness of oral B(12). We investigated patient perspectives on switching from injection to oral B(12 )therapy. METHODS: This study involved a quantitative arm using questionnaires and a qualitative arm using semi-structured interviews, both to assess patient views on injection and oral therapy. Patients were also offered a six-month trial of oral B(12 )therapy. One hundred and thirty-three patients who receive regular B(12 )injections were included from three family practice units (two hospital-based academic clinics and one community health centre clinic) in Toronto. RESULTS: Seventy-three percent (63/86) of respondents were willing to try oral B(12). In a multivariate analysis, patient factors associated with a "willingness to switch" to oral B(12 )included being able to get to the clinic in less than 30 minutes (OR 9.3, 95% CI 2.2–40.0), and believing that frequent visits to the health care provider (OR 5.4, 95% CI 1.1–26.6) or the increased costs to the health care system (OR 16.7, 95% CI 1.5–184.2) were disadvantages of injection B(12). Fifty-five patients attempted oral therapy and 52 patients returned the final questionnaire. Of those who tried oral therapy, 76% (39/51) were satisfied and 71% (39/55) wished to permanently switch. Factors associated with permanently switching to oral therapy included believing that the frequent visits to the health care provider (OR 35.4, 95% CI 2.9–432.7) and travel/parking costs (OR 8.7, 95% CI 1.2–65.3) were disadvantages of injection B(12). Interview participants consistently cited convenience as an advantage of oral therapy. CONCLUSION: Switching patients from injection to oral B(12 )is both feasible and acceptable to patients. Oral B(12 )supplementation is well received largely due to increased convenience. Clinicians should offer oral B(12 )therapy to their patients who are currently receiving injections, and newly diagnosed B(12)-deficient patients who can tolerate and are compliant with oral medications should be offered oral supplementation

    A realistic pattern of fermion masses from a five-dimensional SO(10) model

    Full text link
    We provide a unified description of fermion masses and mixing angles in the framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa couplings of order unity. The space-time is five dimensional and the extra flat spatial dimension is compactified on the orbifold S1/(Z2×Z2)S^1/(Z_2 \times Z_2'), leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions are localised. The gauge symmetry breaking is completed by means of a rather economic scalar sector, avoiding the doublet-triplet splitting problem. The matter fields live in the bulk and their massless modes get exponential profiles, which naturally explain the mass hierarchy of the different fermion generations. Quarks and leptons properties are naturally reproduced by a mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of bulk masses in terms of a single parameter. The model provides a realistic pattern of fermion masses and mixing angles for large values of tanβ\tan\beta. It favours normally ordered neutrino mass spectrum with the lightest neutrino mass below 0.01 eV and no preference for leptonic CP violating phases. The right handed neutrino mass spectrum is very hierarchical and does not allow for thermal leptogenesis. We analyse several variants of the basic framework and find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP
    corecore