164 research outputs found

    Opportunities for Technology and Tool Development: Understanding the Brain as a Whole

    Get PDF
    Major resources are now available to develop tools and technologies aimed at dissecting the circuitry and computations underlying behavior, unraveling the underpinnings of brain disorders, and understanding the neural substrates of cognition. Scientists from around the world shared their views around new tools and technologies to drive advances in neuroscience

    Inhibition decorrelates visual feature representations in the inner retina

    Get PDF
    The retina extracts visual features for transmission to the brain. Different types of bipolar cell split the photoreceptor input into parallel channels and provide the excitatory drive for downstream visual circuits. Mouse bipolar cell types have been described at great anatomical and genetic detail, but a similarly deep understanding of their functional diversity is lacking. Here, by imaging light-driven glutamate release from more than 13,000 bipolar cell axon terminals in the intact retina, we show that bipolar cell functional diversity is generated by the interplay of dendritic excitatory inputs and axonal inhibitory inputs. The resulting centre and surround components of bipolar cell receptive fields interact to decorrelate bipolar cell output in the spatial and temporal domains. Our findings highlight the importance of inhibitory circuits in generating functionally diverse excitatory pathways and suggest that decorrelation of parallel visual pathways begins as early as the second synapse of the mouse visual system

    Type-specific dendritic integration in mouse retinal ganglion cells

    Get PDF
    Neural computation relies on the integration of synaptic inputs across a neuron’s dendritic arbour. However, it is far from understood how different cell types tune this process to establish cell-type specific computations. Here, using two-photon imaging of dendritic Ca2+ signals, electrical recordings of somatic voltage and biophysical modelling, we demonstrate that four morphologically distinct types of mouse retinal ganglion cells with overlapping excitatory synaptic input (transient Off alpha, transient Off mini, sustained Off, and F-mini Off) exhibit type-specific dendritic integration profiles: in contrast to the other types, dendrites of transient Off alpha cells were spatially independent, with little receptive field overlap. The temporal correlation of dendritic signals varied also extensively, with the highest and lowest correlation in transient Off mini and transient Off alpha cells, respectively. We show that differences between cell types can likely be explained by differences in backpropagation efficiency, arising from the specific combinations of dendritic morphology and ion channel densities

    A Synaptic Mechanism for Temporal Filtering of Visual Signals

    Get PDF
    The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties

    Assessing the impact of low level laser therapy (LLLT) on biological systems: a review

    Get PDF
    PURPOSE: Low level laser therapy (LLLT) in the visible to near infrared spectral band (390-1100 nm) is absorption of laser light at the electronic level, without generation of heat. It may be applied in a wide range of treatments including wound healing, inflammation and pain reduction. Despite its potential beneficial impacts, the use of lasers for therapeutic purposes still remains controversial in mainstream medicine. Whilst taking into account the physical characteristics of different qualities of lasers, this review aims to provide a comprehensive account of the current literature available in the field pertaining to their potential impact at cellular and molecular levels elucidating mechanistic interactions in different mammalian models. The review also aims to focus on the integral approach of the optimal characteristics of LLLT that suit a biological system target to produce the beneficial effect at the cellular and molecular levels. METHODS: Recent research articles were reviewed that explored the interaction of lasers (coherent sources) and LEDs (incoherent sources) at the molecular and cellular levels. RESULTS: It is envisaged that underlying mechanisms of beneficial impact of lasers to patients involves biological processes at the cellular and molecular levels. The biological impact or effects of LLLT at the cellular and molecular level could include cellular viability, proliferation rate, as well as DNA integrity and the repair of damaged DNA. This review summarizes the available information in the literature pertaining to cellular and molecular effects of lasers. CONCLUSIONS: It is suggested that a change in approach is required to understand how to exploit the potential therapeutic modality of lasers whilst minimizing its possible detrimental effects

    Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    Get PDF
    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai
    corecore