290 research outputs found
Still Life: Growing Up with Death - A Visual Memoir
This capstone is a multidimensional visual narrative project that incorporates heuristic methodology to illustrate complicated grief that emerged from early childhood loss. The memoir’s intention is to exemplify grief as a complex and mutable composite response to the death of my mother. One objective of this capstone is to understand melancholy, commonly associated with mental illness or symptomatic of depression, as an aesthetic emotion as well as a conduit for philosophical reflection. I use non-verbal approaches to the genre of a memoir by incorporating my photography to epitomize art as a powerful means to comprehend the totality of loss: as visual evidence. I use text in an allusive rather than discursive way, thereby shifting perceptions of loss, grief and melancholy on to the viewer. In this way, the project portrays loss as an elegiac honoring of the deceased while also enacting recovery for the bereaved. I ask the viewer to think about the photograph contrarily, paying particular attention to time. The photograph is not just an image but offers temporal shifts; the past is the viewer’s present and the present is the subject’s future.
This capstone project envisions autobiographical art as articulating the intricacies of profound loss, and that artistic narratives have a place within scholarship. I hope that my visual memoir offers insight into life writing, thanatology studies, and children’s resourceful engagement with the totality of death. The paper and project delineates the fluidity of loss and posits grief as a gift that allows for profound self-expression and the ability to share that knowledge with others. This capstone is digitalized on the internet. The completed memoir project is hosted at https://lbr2000.wixsite.com/rothrosencapston
Severe Facial Herpes Vegetans and Viremia in NFKB2-Deficient Common Variable Immunodeficiency
With the accessibility of next-generation sequencing modalities, an increasing number of primary immunodeficiency disorders (PIDDs) such as common variable immunodeficiency (CVID) have gained improved understanding of molecular pathogenesis and disease phenotype with the identification of a genetic etiology. We report a patient with early-onset CVID due to an autosomal dominant loss-of-function mutation in NFKB2 who developed a severe herpes vegetans cutaneous infection as well as concurrent herpes simplex virus viremia. The case highlights features of CVID, unique aspects of NF-κB2 deficiency including susceptibility to herpesvirus infections, the detection of neutralizing anticytokine antibodies, and the complexity of medical management of patients with a PIDD that can be aided by a known genetic diagnosis
Author Correction: FAM222A encodes a protein which accumulates in plaques in Alzheimer’s disease (Nature Communications, (2020), 11, 1, (411), 10.1038/s41467-019-13962-0)
In the original version of the manuscript, the image shown in Figure 4g, bottom row (Aβ1–42 + rAggregatin), under “6h” was incorrect. This image incorrectly showed the same sample as shown in the original Figure 4g, top row (Aβ1–42), under “0.5h”. The correct version of figure 4g is as follows: (Figure presented.) which replaces the previous incorrect version: (Figure presented.)
High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display
Experimental analysis and manipulation of protein–DNA interactions pose unique biophysical challenges arising from the structural and chemical homogeneity of DNA polymers. We report the use of yeast surface display for analytical and selection-based applications for the interaction between a LAGLIDADG homing endonuclease and its DNA target. Quantitative flow cytometry using oligonucleotide substrates facilitated a complete profiling of specificity, both for DNA-binding and catalysis, with single base pair resolution. These analyses revealed a comprehensive segregation of binding specificity and affinity to one half of the pseudo-dimeric interaction, while the entire interface contributed specificity at the level of catalysis. A single round of targeted mutagenesis with tandem affinity and catalytic selection steps provided mechanistic insights to the origins of binding and catalytic specificity. These methods represent a dynamic new approach for interrogating specificity in protein–DNA interactions
Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis
Background: Impaired signaling in the IFN-g/IL-12 pathway causes susceptibility to severe disseminated infections with mycobacteria and dimorphic yeasts. Dominant gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis.
Objective: We sought to identify the molecular defect in patients with disseminated dimorphic yeast infections.
Methods: PBMCs, EBV-transformed B cells, and transfected U3A cell lines were studied for IFN-g/IL-12 pathway function. STAT1 was sequenced in probands and available relatives. Interferon-induced STAT1 phosphorylation, transcriptional responses, protein-protein interactions, target gene activation, and function were investigated.
Results: We identified 5 patients with disseminated Coccidioides immitis or Histoplasma capsulatum with heterozygous missense mutations in the STAT1 coiled-coil or DNA-binding domains. These are dominant gain-of-function mutations causing enhanced STAT1 phosphorylation, delayed dephosphorylation, enhanced DNA binding and transactivation, and enhanced interaction with protein inhibitor of activated STAT1. The mutations caused enhanced IFN-g–induced gene expression, but we found impaired responses to IFN-g restimulation.
Conclusion: Gain-of-function mutations in STAT1 predispose to invasive, severe, disseminated dimorphic yeast infections, likely through aberrant regulation of IFN-g–mediated inflammationFil: Sampaio, Elizabeth P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz. Laboratorio de Leprologia; BrasilFil: Hsu, Amy P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Pechacek, Joseph. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Hannelore I.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Erasmus Medical Center. Department of Medical Microbiology and Infectious Disease; Países BajosFil: Dias, Dalton L.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Paulson, Michelle L.. Clinical Research Directorate/CMRP; Estados UnidosFil: Chandrasekaran, Prabha. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Rosen, Lindsey B.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Carvalho, Daniel S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz, Laboratorio de Leprologia; BrasilFil: Ding, Li. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Vinh, Donald C.. McGill University Health Centre. Division of Infectious Diseases; CanadáFil: Browne, Sarah K.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Datta, Shrimati. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Milner, Joshua D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Kuhns, Douglas B.. Clinical Services Program; Estados UnidosFil: Long Priel, Debra A.. Clinical Services Program; Estados UnidosFil: Sadat, Mohammed A.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses. Infectious Diseases Susceptibility Unit; Estados UnidosFil: Shiloh, Michael. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: De Marco, Brendan. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Alvares, Michael. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Gillman, Jason W.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Ramarathnam, Vivek. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: de la Morena, Maite. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moreira, Ileana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; ArgentinaFil: Uzel, Gulbu. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Johnson, Daniel. University of Chicago. Comer Children; Estados UnidosFil: Spalding, Christine. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Zerbe, Christa S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Wiley, Henry. National Eye Institute. Clinical Trials Branch; Estados UnidosFil: Greenberg, David E.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Hoover, Susan E.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Rosenzweig, Sergio D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses Infectious Diseases Susceptibility Unit; Estados Unidos. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Primary Immunodeficiency Clinic; Estados UnidosFil: Galgiani, John N.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Holland, Steven M.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unido
Experimental Passage of St. Louis Encephalitis Virus In Vivo in Mosquitoes and Chickens Reveals Evolutionarily Significant Virus Characteristics
St. Louis encephalitis virus (SLEV; Flaviviridae, flavivirus) was the major cause of epidemic flaviviral encephalitis in the U.S. prior to the introduction of West Nile virus (WNV) in 1999. However, outbreaks of SLEV have been significantly more limited then WNV in terms of levels of activity and geographic dispersal. One possible explanation for these variable levels of activity is that differences in the potential for each virus to adapt to its host cycle exist. The need for arboviruses to replicate in disparate hosts is thought to result in constraints on both evolution and host-specific adaptation. If cycling is the cause of genetic stability observed in nature and arboviruses lack host specialization, then sequential passage should result in both the accumulation of mutations and specialized viruses better suited for replication in that host. Previous studies suggest that WNV and SLEV differ in capacity for both genetic change and host specialization, and in the costs each accrues from specializing. In an attempt to clarify how selective pressures contribute to epidemiological patterns of WNV and SLEV, we evaluated mutant spectra size, consensus genetic change, and phenotypic changes for SLEV in vivo following 20 sequential passages via inoculation in either Culex pipiens mosquitoes or chickens. Results demonstrate that the capacity for genetic change is large for SLEV and that the size of the mutant spectrum is host-dependent using our passage methodology. Despite this, a general lack of consensus change resulted from passage in either host, a result that contrasts with the idea that constraints on evolution in nature result from host cycling alone. Results also suggest that a high level of adaptation to both hosts already exists, despite host cycling. A strain significantly more infectious in chickens did emerge from one lineage of chicken passage, yet other lineages and all mosquito passage strains did not display measurable host-specific fitness gains. In addition, increased infectivity in chickens did not decrease infectivity in mosquitoes, which further contrasts the concept of fitness trade-offs for arboviruses
A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair
To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation
Recommended from our members
Proceedings from the 9th annual conference on the science of dissemination and implementation : Washington, DC, USA. 14-15 December 2016
Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1
Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti–IFN-β and another anti–IFN-ε, but none had anti–IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.publishedVersio
- …