1,987 research outputs found

    Comparisons of the execution times and memory requirements for high-speed discrete fourier transforms and fast fourier transforms, for the measurement of AC power harmonics

    Get PDF
    Conventional wisdom dictates that a Fast Fourier Transform (FFT) will be a more computationally effective method for measuring multiple harmonics than a Discrete Fourier Transform (DFT) approach. However, in this paper it is shown that carefully coded discrete transforms which distribute their computational load over many frames can be made to produce results in shorter execution times than the FFT approach, even for large number of harmonic measurement frequencies. This is because the execution time of the presented DFT actually rises with N and not the classical N2 value, while the execution time of the FFT rises with Nlog2N

    Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids

    Get PDF
    Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios

    Benchmarking and optimisation of Simulink code using Real-Time Workshop and Embedded Coder for inverter and microgrid control applications

    Get PDF
    When creating software for a new power systems control or protection device, the use of auto-generated C code via MATLAB Simulink Real-Time Workshop and Embedded Coder toolboxes can be a sensible alternative to hand written C code. This approach offers the benefits of a simulation environment, platform independence and robust code. This paper briefly summarises recent experiences with this coding process including the pros and cons of such an approach. Extensive benchmarking activities are presented, together with descriptions of simple (but non-obvious) optimisations made as a result of the benchmarking. Examples include replacement of certain Simulink blocks with seemingly more complex blocks which execute faster. "S functions" are also designed for certain key algorithms. These must be fully "in-lined" to obtain the best speed performance. Together, these optimisations can lead to an increase in execution speed of more than 1.4x in a large piece of auto-generated C code. An example is presented, which carries out Fourier analysis of 3 signals at a common (variable) frequency. The overall speed improvement relative to the baseline is 2.3x, of which more than 1.4x is due to non-obvious improvements resulting from benchmarking activities. Such execution speed improvements allow higher frame rates or larger algorithms within inverters, drives, protection and control applications

    Integration of a mean-torque diesel engine model into a hardware-in-the-loop shipboard network simulation using lambda tuning

    Get PDF
    This study describes the creation of a hardware-in-the-loop (HIL) environment for use in evaluating network architecture, control concepts and equipment for use within marine electrical systems. The environment allows a scaled hardware network to be connected to a simulation of a multi-megawatt marine diesel prime mover, coupled via a synchronous generator. This allows All-Electric marine scenarios to be investigated without large-scale hardware trials. The method of closing the loop between simulation and hardware is described, with particular reference to the control of the laboratory synchronous machine, which represents the simulated generator(s). The fidelity of the HIL simulation is progressively improved in this study. First, a faster and more powerful field drive is implemented to improve voltage tracking. Second, the phase tracking is improved by using two nested proportional–integral–derivative–acceleration controllers for torque control, tuned using lambda tuning. The HIL environment is tested using a scenario involving a large constant-power load step. This provides a very severe test of the HIL environment, and also reveals the potentially adverse effects of constant-power loads within marine power systems

    MMC with parallel-connected MOSFETs as an alternative to wide bandgap converters for LVDC distribution networks

    Get PDF
    LVDC networks offer improved conductor utilisation on existing infrastructure and reduced conversion stages, which can lead to a simpler and more efficient distribution network. However, LVDC networks must continue to support AC loads, requiring efficient, low distortion DC-AC converters. In addition, there are increasing numbers of DC loads on the LVAC network requiring controlled, low distortion, unity power factor AC-DC converters with increasing capacity, and bi-directional capability. An efficient AC-DC/DC-AC converter design is therefore proposed in this paper to minimise conversion loss and maximise power quality. A comparative analysis is carried out for a conventional IGBT 2-level converter, a SiC MOSFET 2-level converter, a Si MOSFET MMC and a GaN HEMT MMC, in terms of power loss, reliability, fault tolerance, converter cost, and heatsink size. The analysis indicates that the 5-level MMC with parallel-connected Si MOSFETs is an efficient, cost effective converter for LV converter applications. MMC converters suffer negligible switching loss, which enables reduced device switching without loss penalty from increased harmonics and filtering. Optimal extent of parallel connection for MOSFETs in an MMC is investigated. Experimental results are presented for current sharing in parallel-connected MOSFETs, showing reduction in device stress and EMI generating transients through the use of reduced switching

    Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign

    Get PDF
    Mixing ratios of the atmospheric nitrogen oxides NO and NO2 were measured as part of the OPALE (Oxidant Production in Antarctic Lands & Export) campaign at Dome C, East Antarctica (75.1 degrees S, 123.3 degrees E, 3233 m), during December 2011 to January 2012. Profiles of NOx mixing ratios of the lower 100m of the atmosphere confirm that, in contrast to the South Pole, air chemistry at Dome C is strongly influenced by large diurnal cycles in solar irradiance and a sudden collapse of the atmospheric boundary layer in the early evening. Depth profiles of mixing ratios in firn air suggest that the upper snowpack at Dome C holds a significant reservoir of photolytically produced NO2 and is a sink of gas-phase ozone (O-3). First-time observations of bromine oxide (BrO) at Dome C show that mixing ratios of BrO near the ground are low, certainly less than 5 pptv, with higher levels in the free troposphere. Assuming steady state, observed mixing ratios of BrO and RO2 radicals are too low to explain the large NO2 : NO ratios found in ambient air, possibly indicating the existence of an unknown process contributing to the atmospheric chemistry of reactive nitrogen above the Antarctic Plateau. During 2011-2012, NOx mixing ratios and flux were larger than in 2009-2010, consistent with also larger surface O-3 mixing ratios resulting from increased net O-3 production. Large NOx mixing ratios at Dome C arise from a combination of continuous sunlight, shallow mixing height and significant NOx emissions by surface snow (F-NOx). During 23 December 2011-12 January 2012, median F-NOx was twice that during the same period in 20092010 due to significantly larger atmospheric turbulence and a slightly stronger snowpack source. A tripling of F-NOx in December 2011 was largely due to changes in snowpack source strength caused primarily by changes in NO3- concentrations in the snow skin layer, and only to a secondary order by decrease of total column O-3 and associated increase in NO3- photolysis rates. A source of uncertainty in model estimates of F-NOx is the quantum yield of NO3- photolysis in natural snow, which may change over time as the snow ages

    Choice and properties of adaptive and tunable digital boxcar (moving average) filters for power systems and other signal processing applications

    Get PDF
    The humble boxcar (or moving average) filter has many uses, perhaps the most well-known being the Dirichlet kernel inside a short-time discrete Fourier transform. A particularly useful feature of the boxcar filter is the ease of placement of (and tuning of) regular filter zeros, simply by defining (and varying) the time length of the boxcar window. This is of particular use within power system measurements to eliminate harmonics, inter-harmonics and image components from Fourier, Park and Clarke transforms, and other measurements related to power flow, power quality, protection, and converter control. However, implementation of the filter in real-time requires care, to minimise the execution time, provide the best frequency-domain response, know (exactly) the group delay, and avoid cumulative numerical precision errors over long periods. This paper reviews the basic properties of the boxcar filter, and explores different digital implementations, which have subtle differences in performance and computational intensity. It is shown that generally, an algorithm using trapezoidal integration and interpolation has the most desirable characteristics

    Real-time compression of IEC 61869-9 sampled value data

    Get PDF
    Fast-acting, yet cost-effective, communications is critical for smarter grid monitoring, protection, and control. This paper demonstrates a new approach for the real-time compression of Sampled Value (SV) data based on the IEC 61869-9 recommendations. This approach applies simple compression rules, yet yields excellent compression performance---typically compressing data to less than half of the original size. This leads to a significant and beneficial reduction in encoding time (in the merging unit producing the SV data) and decoding time (at the end application), as well as the main benefit of reduced Ethernet transmission times resulting from the reduced frame size. As well as reducing the absolute bandwidth requirements in typical applications, this has system-wide benefits due to reducing Ethernet queuing delays and the consequent network jitter. The approach has been validated on a real-time platform to accurately measure all contributions to the end-to-end delay. This work will help enable low-latency and bandwidth-sensitive applications involving the SV protocol, such as phasor measurement units and wide-area protection

    Dark Matter Scaling Relations

    Get PDF
    We establish the presence of a dark matter core radius, for the first time in a very large number of spiral galaxies of all luminosities. Contrary to common opinion we find that the sizes of these cores and the " DM core problem" are bigger for more massive spirals. As a result the Burkert profile provides an excellent mass model for dark halos around disk galaxies. Moreover, we find that the spiral dark matter core densities ρ0\rho_{0} and core radii r0r_{0} lie in the same scaling relation ρ0=4.5×102(r0/kpc)2/3Mpc3\rho_{0}=4.5\times 10^-2 (r_{0}/kpc)^{-2/3} M_{\odot}pc^{-3} of dwarf galaxies with core radii upto ten times more smaller.Comment: 4 pages, 4 figures, Accepted for Publication in Apj Let
    corecore