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Benchmarking and optimisation of Simulink code
using Real-Time Workshop and Embedded Coder
for inverter and microgrid control applications
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Abstract- When creating software for a new power systems
control or protection device, the use of auto-generated C code
via MATLAB Simulink Real-Time Workshop and Embedded
Coder toolboxes can be a sensible alternative to hand written C
code. This approach offers the benefits of a simulation
environment, platform independence and robust code. This
paper briefly summarises recent experiences with this coding
process including the pros and cons of such an approach.
Extensive benchmarking activities are presented, together with
descriptions of simple (but non-obvious) optimisations made as a
result of the benchmarking. Examples include replacement of
certain Simulink blocks with seemingly more complex blocks
which execute faster. “S functions” are also designed for certain
key algorithms. These must be fully “in-lined” to obtain the best
speed performance. Together, these optimisations can lead to an
increase in execution speed of more than 1.4x in a large piece of
auto-generated C code. An example is presented, which carries
out Fourier analysis of 3 signals at a common (variable)
frequency. The overall speed improvement relative to the
baseline is 2.3x, of which more than 1.4x is due to non-obvious
improvements resulting from benchmarking activities. Such
execution speed improvements allow higher frame rates or
larger algorithms within inverters, drives, protection and
control applications.

Index Terms— Power system measurements, Power system
control, Power system protection, Motor drives, Inverters,
Power electronics

I. INTRODUCTION

When creating software for a new power systems control or
protection device, the use of MATLAB Real Time Workshop
and Embedded Coder toolboxes can be a sensible alternative
to hand written C code [1-3]. First, this approach allows easy
verification and test of the software before deployment on the
target platform, by embedding the Simulink code in a
simulation environment. Additionally, this approach provides
platform independence because the Simulink code can be
ported (normally without modification) to different platforms
simply by use of the appropriate Embedded Coder plug-in.
The use of Simulink also aids the production of robust code
compared to methods such as hand written C code; this is
particularly true for relatively inexperienced C programmers.

The authors have used this development process to aid in
the creation of two significant real time software projects on
two different platforms. The first project is a 10kVA 3 phase
inverter control algorithm using the Infineon TC1796
microcontroller [4, 5]. The second project is a 100kVA
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microgrid control application, using the multi processor ADI
RTS MVME platform [6]. This paper summarises recent
experiences with this coding process, including the pros and
cons of such an approach.

II. BENCHMARKING

To evaluate the performance of C code auto-generated by
Real-Time-Workshop, a simple benchmarking environment
has been created (Fig. 1), using the TC1796 microcontroller.

RESETIO_P1_15; // Turn on LED

for (ii=0;ii<Nloops;ii++) {

// Insert reference or test
// algorithm here

}

SETIO_P1_15; // Turn off LED

Microcontroller

Oscilloscope to measure execution
time at P1_15 output pin

Fig. 1. Benchmarking environment using the TC1796 microcontroller.

Test algorithms, from the simplest code blocks to large
program segments, are executed repeatedly within a
for...next loop. The frame time is fixed at 1000us and the
number of iterations is set so that the execution takes most of
this time. The execution time can be measured by setting
logic transitions of a suitable output pin at the beginning and
end of the for...next loop. Care must be taken to first run a
reference case with an empty (or nearly empty) loop, to
account for the overhead of the for...next loop and any
associated code required to feed dummy data into the
algorithm under test. This dummy data should not be fixed,
but should change each iteration to cover the representative
range of values expected to be input to each function. A
similar environment has also been created on the RTS
platform, although this is currently only suitable for
measuring larger functions with execution times of many ps.
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Fig. 2. Benchmarking results (average execution time) for 32-bit floating-point operations on the TC1796. Program in flash memory (caching disabled).
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Simulink : Conversion to Int32 via Ceil/Floor/Round/Fix (no saturation checking)

Simulink : Conversion to Int32 via Ceil/Floor/Round/Fix (with saturation checking)

Hand-coded S function : casting to int32 (Ceil/Floor/Round/Fix) (no saturation check)

Hand-coded S function : casting to int32 (Ceil/Floor/Round/Fix) (with saturation check)
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Fig. 3. Benchmarking results (average execution time) for 32-bit floating-point to int32 conversion operations on the TC1796. Program in flash memory
(caching disabled).

It should be mentioned that throughout this work, the
Tasking compiler (used to create executable code from
autogenerated C code) was used with its optimisation set
to “Debug level 2” which attempts to minimise execution
time but without “in-lining” repeated function calls, which
would significantly increase the program memory
requirement. Also, the benchmarks were all executed from
the TC1796 flash memory. For the experiments shown in
Figs 2 and 3, this was used un-cached. For the larger
function measurements, the caching facility was enabled.
This allows the TC1796 to cache sections of the flash
memory within internal RAM, giving a 20-50% speed
improvement.

The Simulink options “block reduction optimisation”
and “inline parameters” were also used at all times, both of
which help to minimise execution times.

A.  Floating point functions
Fig. 2 shows measured times for 32-bit floating point
operations on the TC1796. Of particular interest within

power systems are the functions sqrt, sin, cos and atan2.
Unsurprisingly, these functions show relatively long
execution times, although it should be noted that only
1.04ps is required for a sin or cos operation. This
compares favourably with the time taken to extract a value
from an interpolated lookup table (0.78ps). Thus, the
trigonometric functions should not be explicitly avoided
but should only be evaluated where strictly necessary,
employing storage and re-use of pre-calculated results
wherever possible.

The largest surprise is the time taken by the Simulink
function abs when applied to a floating-point number
(0.53us) on the TC1796. The auto-generated C code
contained a fabs call which appears on a list of
trigonometric functions, linked with the cabs function for
complex numbers. It has been found that the execution
time of this function can be reduced to (on average) 0.06pus
by replacing all instances of abs by the simple Simulink
code segment shown in Fig. 4. This represents a 9x speed
improvement!
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Fig. 4. abs(x) algorithm which executes (on average) 9x faster than the
Simulink abs function.

B.  Floating-point to integer (int32) conversions

Fig. 3 shows measured times for floating-point to
integer (int32) conversions on the TC1796. The Simulink
functions “Data Type Conversion” combined with the ceil,
round, floor or fix operators take 1.3ps or more to
evaluate. Interestingly, the versions without saturation
checking take longer than those without. This appears to
be due to an even slower wraparound function which is
used when saturation checking is not enabled. A
significant (~5x) speed increase can be obtained by
creating single-line “S functions” in Simulink which carry
out a native C casting from the floating-point to the int32
datatype, and then combining these with small Simulink
functions which provide the ceil, round, floor or fix
operations. Fig. 5 shows an example of the round function
as optimised. The catch is that native casting is hardware
specific and, to date, this is the only known case found by
the authors which requires the Simulink code to be
modified for different hardware platforms. This can be
accommodated by setting a global variable CastingMethod
to 1 or 0 for different processors as shown in Fig. 5.
CastingMethod is set to 0 for PCs and other processors
which natively cast towards zero (fix) whereas the TC1796
natively provides a round operation and CastingMethod
must be set to 1.

Converts a floating point number to int32
ROUND

[CastingMethod %

S-Function
SF_Cast_double_to_int32

Fig. 5. Example of the round function provided for different hardware
types, using a single-line “S function” to carry out native casting.

Fig. 3 also shows that the mod function as provided by
Simulink is extremely costly in terms of CPU time
(2.33ps) This is relevant, since such a function is often
useful for wrapping or unwrapping of phase within or
across the —t<@<+r boundaries. The reason for the long
execution time is that the mod function uses the floor
function. Therefore a manual version can be coded to use
the native casting as described above. This manual mod

SF_Cast_double_to_int32

Int32

function can be executed in 0.32 to 5S5us (dependent on the
saturation checks required), a speed increase of 4x to 7x.

III. FULLY “IN-LINING” THE “S FUNCTIONS”

Any Simulink “S functions” which are created to
optimise speed must “fully in-lined” to obtain the best
performance. The Simulink documentation explains this
process in some detail. In the case of the native casting
from floating-point to integer, the “S function” requires
two files to be created. One has a ‘.c’ extension and
contains the single-line piece of code:

static void mdlOutputs(SimStruct *S, int_T tid)
{
const real T *dbl
int32_T *i32

= (const real_T*) ssGetInputPortSignal(S,0);

= (int32_T *) ssGetOutputPortRealSignal(S,0);
*i32 = (int)*dbl;

}

The second file has a ¢.tlc’ extension and contains a similar
but different line of code:

$function Outputs(block, system) Output
%assign pu0 = LibBlockInputSignal(0, "", "", 0)
%assign py0 = LibBlockOutputSignal(o0, "", "", 0)
{

%<py0> = (int)%<pu0>;
}

This means that similar but non-identical code sections
must be maintained within the ‘.c’ and ‘.tlc’ files. It is
possible to partially “in-line” the “.tlc’ file by using the
code segment:
$function Outputs(block, system) Output
%assign pu0 = LibBlockInputSignalAddr (0, "", "", 0)

%assign py0 = LibBlockOutputSignalAddr (0, "", "", 0)
{

real T *dbl
int_T *i32

%$<pul>; /* Input signal */
$<py0>; /* Output signal */

*i32 = (int)*dbl;
}

This allows the same line(s) of core code to be copy-
pasted between the ‘.c’ and ‘tlc’ files. However, this
requires additional memory and adds processing time
(0.1ps or more, dependent upon the function complexity)
to each “S function” call. The same rationale applies to
more complex “S functions” such as the delay buffer
blocks required for exact-time averaging.

IV. EXACT-TIME AVERAGING AND INTEGRATING

To perform a fast-responding Fourier analysis of a
voltage or current waveform at a variable frequency
(normally between 40 and 70Hz), it is necessary to
integrate the Fourier correlations over exactly one cycle
period. This turns out to be a difficult algorithm to
implement when there are relatively few samples per
cycle, and the samples are not necessarily coherent with
the zero-crossings of the signal [7]. The Simulink
SimPowerSystems blockset contains algorithms called
“Discrete Mean Value” and “Discrete Variable Frequency
Mean Value” which carry out this task, although they can
be improved upon in terms of accuracy, robustness and
speed. These improvements are described fully in [8, 9].
Notably, the improvements require an increase in the
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number of signal buffering blocks from 1 to 3 for each
average/integral required. The time taken for the original
Simulink “Discrete Variable Transport Delay” signal
buffer algorithm was measured at 1.50pus on the TC1796
(program flash memory caching disabled) or 0.75us
(caching enabled). A purely Simulink algorithm using the
“tapped delay” block was trialled but this resulted in C
code which was extremely slow to execute for large
buffers. The final optimised “S function” version created
by the authors (see [8] for code details) executed in 0.31ps
(caching disabled) or 0.23us (caching enabled). This is
more than 3x faster, so 3 of the improved buffers can still
be executed faster than 1 of the original Simulink buffers.

V. EXAMPLE OF OPTIMISATION: SINGLE-CYCLE FOURIER
ANALYSIS OF 3 SIGNALS AT A COMMON FREQUENCY

The following example shows how the code to carry out
Fourier analysis of 3 signals at a common (variable)
frequency has been incrementally optimised, using all the
techniques previously described.
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Fig. 6. Benchmarking of three fixed-frequency Fourier analysis blocks
from the SimPowerSystems blockset of Simulink

Phase

The starting point is a set of three fixed-frequency
“Discrete ~ Fourier” blocks from the Simulink
SimPowerSystems blockset (Fig 6). These take 20us to

Three SPS Fixed-Frequency "Discrete Fourier" (6 SPS

"Discrete Mean Value" blocks)

First variable-frequency solution (baseline) using 6 SPS

"Discrete Variable Frequency Mean Value" blocks

Improwved robustness and accuracy using 6 new "exact-time
averaging" blocks (# data buffers increases from 6 to 18)

Fully "in-lined" S functions

Share "PART A" data between the three Fourier blocks

Replace a single Simulink double-to-int32 conversion (ceil)

with direct casting S function

Replace a single Simulink MOD function with a -pi to +pi

check

execute (see Fig 7). Note that this solution does not
account for variable-frequency operation. This is most
simply achieved by modifying the “Discrete Fourier”
blocks to add variable frequency operation. Most
importantly, this means replacing the “Discrete Mean
Value” blocks with “Discrete Variable Frequency Mean
Value” blocks (all from the SimPowerSystems blockset).
The resulting algorithm took 29us to execute and is the
baseline for subsequent optimisation.

The first step is to improve the robustness and accuracy
of the exact-time averaging/integrating algorithms. This
reduces the time to 26ps, despite that fact that the number
of signal buffers is increased from 6 to 18, and that the “S
functions” were initially only partially “in-lined”. Fully
“in-lining” the “S functions” further reduces the execution
time to 24ps. The third step is to split the Fourier
algorithms into a “Part A” and “Part B” sections. In “Part
A”, all common calculations which are functions of the
variable frequency input are calculated. This “Part A” data
can be shared with all three “Part B” sub-algorithms,
removing substantial repetitions of calculations. This
reduces the number is sin/cos operation pairs from 3 to 1,
and also optimises the code required to configure the
signal buffers and exact-time averaging blocks. Execution
time is significantly reduced to 15pus. These steps are
described in more detail in [8, 9].

The last two steps to take are identified by the
benchmarking exercises. In this case, a single
floating-point to integer conversion via the ceil operator is
replaced by a manually coded version combined with the
one-line “S function™ presented earlier. Also, a Simulink
mod function is replaced by a manually coded version.
These final two steps shave another 1 and 2ps
respectively off the execution time.

5 10 15 MS 20 25 30 35

20

29

26

24

Fig. 7. Incremental reduction of execution time of the Fourier analysis of 3 signals at a common (variable) frequency, from 29 to 12ps.
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Fig. 8. Benchmarking of three variable-frequency Fourier analysis blocks in the most optimised form.

An overview of the final algorithm is shown in Fig. 8.
This executes in 12.3us, 2.3x faster than the baseline case
which takes 28.8us. The speed increase breakdown is a
factor of 1.6x for logical code improvements (the
implementation of the “Part A” and “Part B” architecture),
and further factor of 1.4x for less obvious improvements
such as signal buffering, integer conversions, and the
re-coding of abs and mod.

VI. CONCLUSIONS

Although Simulink (combined with its Real-Time
Workshop and Embedded Coder extensions) provides a
very robust and convenient method of implementing
algorithms on multiple platforms, the benchmarking
activities and resulting optimisations carried out during
this work have proved invaluable in reducing the
execution time of several key projects.

This paper has presented results obtained on the
Infineon TC1796 microcontroller, on which speed
increases of up to 2.3x have been made due to incremental
improvements within certain key algorithms. These
improvements allow more complex inverter and
motor-drive applications to be implemented at higher
frame rates.

During the course of this work, the same optimisations
have also been applied to other large microgrid
management projects on the ADI RTS instrument, with
similar proportionate speed improvements.

This work highlights the benefits that some (initially
time-consuming) benchmarking activities can have, and
particularly the insights it can bring into the performance
of both code auto-generation tools and hardware platform
capabilities. Although many of the concepts presented in
this paper are generic to all hardware platforms,
benchmarking on each individual hardware platform
would be recommended for any new applications where
execution speed is a key factor.
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