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Abstract�The humble boxcar (or moving average) filter has 

many uses, perhaps the most well-known being the Dirichlet 

kernel inside a short-time discrete Fourier transform.  A 

particularly useful feature of the boxcar filter is the ease of 

placement of (and tuning of) regular filter zeros, simply by 

defining (and varying) the time length of the boxcar window. This 

is of particular use within power system measurements to 

eliminate harmonics, inter-harmonics and image components 

from Fourier, Park and Clarke transforms, and other 

measurements related to power flow, power quality, protection, 

and converter control. However, implementation of the filter in 

real-time requires care, to minimise the execution time, provide 

the best frequency-domain response, know (exactly) the group 

delay, and avoid cumulative numerical precision errors over long 

periods. This paper reviews the basic properties of the boxcar 

filter, and explores different digital implementations, which have 

subtle differences in performance and computational intensity. It 

is shown that generally, an algorithm using trapezoidal integration 

and interpolation has the most desirable characteristics.  

Keywords� Adaptive filters, Array signal processing, Finite 

impulse response filters, Power system measurements, Fourier 

transforms, Frequency measurement, Phase estimation, Power 

system state estimation, Power system parameter estimation 

I.  THE IDEAL BOXCAR FILTER 

The ideal boxcar (moving average) filter in real-time is a 
rolling average of a real-valued input signal over a definite time 
which extends from a sample at time �now� (t=0) back into the 
past to a time t = -T, where T is the length of the boxcar window, 
and the window is rectangular. In literature the terms boxcar 
filter, moving average filter, and rectangular filter/window are 
all essentially interchangeable, with the same meaning. The 
boxcar filter is a Finite Impulse Response (FIR) filter, and is 
shown in Fig. 1. This filter is causal, and has a group delay equal 
to T/2. 

The ideal boxcar filter can be expressed in the Laplace 
domain by combining two opposing unit step (Heaviside) 
functions into the expression: 
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Fig. 1 The ideal boxcar filter. 

The frequency domain performance of the ideal boxcar can 
be understood by evaluating (1) over a range of frequencies and 
substituting fj jのs π2== , or by referring to standard tables of 

Fourier transforms for the rectangular window, time-shifted (the 
translation theorem) so that the window is not centered on t = 0, 
but on t = - T/2. This reveals an amplitude response with a sinc() 
shape and a linear phase response corresponding to the group 
delay of T/2: 
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The sinc() shape gives the boxcar filter its well-known 
frequency response (Fig. 2), acting as a low-pass filter, with 
zeros at every frequency f = n/T where n is integer, and a 1st 
sidelobe with an amplitude of -13.26 dB [1]. 

By varying the time length of the boxcar, the filter zeros can 
be moved very easily. For example, if the time length is adjusted 
to T = 21 ms then the filter zeros appear at multiples of 
1/0.021 = 47.62 Hz, and the filter is well tuned to measure 
signals with a fundamental at this frequency. This is one 
example of an application within a power-systems environment, 
where the desired value of T can be determined in real time, from 
the power system frequency [2][3][4]. 

The boxcar filter/window has the lowest equivalent noise 
bandwidth (ENBW) of any filter, but the high -13.26 dB 
sidelobe is significantly worse than most other windows/filters. 
Therefore, boxcar filters are often cascaded or combined with 



other filters (boxcars or others) to form the most appropriate 
filter for a particular purpose. In particular they have many 
applications within satellite and terrestrial communications, and 
software-defined radio, commonly arranged in a CIC (Cascaded 
Integrator Comb) architecture [5] [6] [7]. 

 

Fig. 2 The ideal boxcar filter response, for T = 20 ms window time length. 

II. DIGITAL IMPLEMENTATIONS 

When a waveform is sampled digitally at a sample rate fS, the 
time between samples is TS = 1/ fS. Aside from the usual issues 
of aliasing, the main problem in terms of implementing a digital 
boxcar filter is that the desired value of T, the length of the 
boxcar, is usually not equal to an integer number of sample times 
TS . This is a perceived barrier to implementing digital boxcar 
filters with general lengths. 

Alternative methods focus on using fixed filter lengths with 
N (integer) samples. When a boxcar (or other) filter with fixed 
length N samples is used within a Discrete or Fast Fourier 
Transform (DFT or FFT), a technique called the interpolated 
DFT/FFT [8] was developed in the 1970s, as a post-processing 
stage to apply, in an effort to reduce spectral leakage, with 
associated errors and uncertainties. Many modern power-system 
measurement algorithms continue to apply this technique, or 
other fixed-window techniques such as Taylor Fourier 
Transforms or their derivatives [9] [10] [11]. In fields other than 
power systems, modern literature still suggests that 
implementing the general digital boxcar filter is difficult, with 
various techniques suggested to avoid the problem. For instance, 
[12] uses a 2-stage technique using variable and fixed multi-rate 
sampling. 

The main point of this paper is to emphasise that dealing with 
T ≠ N TS (N integer), and tuning T in real time, is not difficult, 
and requires only a few simple calculations. Indeed, a partial 
solution has existed within MATLAB®/SIMULINK® for a 
number of years [13], and some of the methods presented below 
have been used by the author in a number of power-system 
measurement applications [3] [4], following some much earlier 
investigations in chapter 3 of [14]. In particular, for the first time, 
this paper examines the most appropriate curve-fitting and 
digital filter expressions to use, through formal transfer function 
investigation, to obtain the best accuracy of zero placement and 
to maintain good wideband noise rejection. 

A. The ideal digital implementation 

It is tempting to say that if the desired filter length T 
happened to result in an exactly integer number of samples, i.e. 
T/TS = N, with N integer, then the ideal boxcar filter would 

consist simply of the N most recent samples with equal 
weighting 1/N: 
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An equivalent expression can be written, by considering the 
windowing to be equivalent to a backward Euler digital 
integration ( )1−zzTS

, divided by the total integration time NTS, 

times ( )Nz−
−1 , as shown in (4), which can also be derived by 

summing the geometric progression in (3). This is, at first sight, 
an accurate digital version of (1) i.e. 
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However, there are two linked properties of this filter which 
raise issues. Firstly, if the most recent sample is considered at 
time t = 0, then the group delay of the filter is (N-1)TS/2, which 
is not equal to T/2. The group delay is ½ sample less than 
expected. Secondly if two such filters are cascaded in the time 
domain, the combined filter weights are the convolution of the 
two filters. As a general property, convolution of two filters with 
N1 and N2 weights results in a filter with (N1+N2-1) weights. 
When convoluting two digital filters with N weights in each, the 
combined filter will therefore have (2N-1) weights. Cascading a 
further identical filter will lead to a filter with (3N-2) weights. 
The filter gets shorter than expected by one sample, every time 
a new filter is cascaded, and it is linked to the fact that the filter 
group delay is ½ sample shorted than expected. 

For this reason, the most accurate representation of (1) in a 
digital format, with N integer, is to take the filter represented by 
(3) & (4) and instead to use trapezoidal integration

( ) ( )121 −+ zzTS
. Effectively the filter weights resulting from 

(3) are convoluted by a tiny additional filter with 2 equal weights 
of [½ ½], where the convolution by [½ ½] is a handy method of 
converting backward Euler integration into trapezoidal 
integration. The resulting expression is: 
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This filter has (N+1) weights, with the most recent at time 
t = 0 and the oldest with time t = -NTS, and possesses a group 
delay of NTS/2. The group delay matches (1). If two filters are 
cascaded (convoluted), the resulting filter will have 
2(N+1)-1= 2N+1 weights. Cascading a further identical filter 
will lead to a filter with (3N+1) weights, etc. Therefore, 
successive cascading no longer results in a filter which seems to 
shrink each time. 

Although the whole argument above considered T/TS to 
result in N being conveniently integer, there is nothing 
mathematical which prevents (5) being evaluated with N 
replaced by a variable m which is not integer, to deduce an 
�ideal� digital boxcar filter response. 

ST

T
m =  (6)

Evaluating (5) directly using m allows an ideal digital boxcar 
filter response HIdeal to be bode-plotted in the frequency domain. 
However, when m is not integer, it is not practical to actually use 



this approach to design and/or execute a real filter. The required 
filter weights are not obvious, but can be estimated by either 
performing a Fourier transform on the bode plot, or by placing 
the filter zeros at the expected notch frequencies f = ±n/T, plus 
an extra zero at Nyquist f=fS/2, and multiplying out the resulting 
polynomial in z. For either method, this will be computationally 
expensive if m is large and will make real-time filter 
reconfiguration impractical. Additionally, the evaluation of the 
filter output will require complete re-computation of the entire 
sum of products of FIR weights and samples. Again, when fS 
and/or m is large, this prevents practical implementation. The 
following methods, by contrast, are designed to operate with a 
minimum of mathematical computations, to maximize the speed 
of both filter evaluation and reconfiguration. In fact, 
reconfiguration can be done at the full fS=1/TS rate. 

B. General procedure for filter design 

In a general case, for a desired boxcar time length T, the 
following expressions are the starting point for configuring a 
practical filter: 

( )mceilN =  , i.e.  mN =   (the ceiling function) (7)

mNx −=     with 10 <≤ x  (8)
The actual number of samples lengths required is m, while N 

is the integer number of samples over which an initial integration 
� an approximate (overlong) boxcar window � is performed. x 
represents the fractional part-sample worth of window which 
must be subtracted from the initial overlong window. 

Several implementation variants/versions will be described. 
The overall filter response Hvv for each variant vv is constructed 
in stages according to the equation: 
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First the signal is passed through an integrator with response 
HI_vv, which contains only a few computations and states. The 
result of the integration from a time NTS in the past is then 
subtracted from the present integrator output using a function 

which makes the integral definite: ( )N

vvD zH −
−= 1_

 for all 

practical digital implementations. This requires a memory buffer 
of length N samples � in fact two are usually required so that 
each integrator can be periodically reset to remove the 
possibility of long-term numerical precision errors in the 
floating-point integrator [4]. The result at this point is the 
overlong integration � overlong by a period of xTS seconds. A 
small correction is then required to �back out� the overlong 
section. This requires a short expression with a response HC_vv 
using 1, 2 or 3 samples which were taken around the period of 
the window beginning, a time NTS into the past. The expression 
used, and number of samples used in it, must be based on and 
exactly match the integration method in HI_vv. This requires 
another memory buffer, so that 3 buffers are (usually) required 
in total. HN is an optional extra step which simply implements a 
2-sample filter and places a zero at the Nyquist frequency f=fS/2: 
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Note that the number of computational steps in this whole 
procedure is independent of the value of N. The only implication 

of using large numbers of samples is the expanding memory 
requirement for the buffers. 

C. Implementation using backward Euler integration 

The backward Euler method simply has integration: 
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Also, the extra integrated area which must be removed due 
to x can simply be written as : 
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The method is shown graphically in Fig. 3, and also 
corresponds to (4) if N is integer and x = 0. 

 
Fig. 3 Example of the backward Euler method HBE with T = 8.4 TS 

D. Implementation using Trapezoidal integration 

Essentially the incoming signal value is curve-fit with a 1st-
order polynomial such that its value y can be estimated: 
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In (14), x� is defined so that the newest sample is considered 
at t=0, where x�=1, while the previous sample is effectively at 
t=-TS, x�=0 and the idea is to find the expression for the new 
trapezoidal area to add using the accumulation function z/(z-1): 
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For the 1st order (linear) interpolation: 
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Combining (15) and (16) reveals the not-unexpected form of 
the trapezoidal integration expression. 
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More importantly, the same curve fitting process can be 
applied to the samples in the past, to reveal the expression for 
HC_T. To do this, x� and the kis are redefined using the much older 
samples: 
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Now HC_T, the correction for the overlong initial integration, 
can be deduced as (using x from (8)): 
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Combining (19) and (20) reveals: 
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The entire process is shown graphically in Fig. 4, which can 
be compared to Fig. 3 

 
Fig. 4 Example of the Trapezoidal method HT with T = 8.4 TS 

The Simulink block �Mean (Variable Frequency)� [13], in 
existence since pre-2004, implements a similar filter. However, 
[13] begins the averaging at t = -NTS and ends at t = -x, so the 
group delay changes with x (and T). Also [13] contains only one 
floating-point integrator which runs continually, and is therefore 
liable to precision errors due to long-term DC accumulations or 
individual input samples with very large values. 

E. Implementation using 2nd order polynomial integration 

The procedure for defining a process using 2nd order curve 
fitting is the same as for the trapezoidal (1st order) method, using 
the same expressions for x, and x� but with longer expressions 
for: 
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Combining (23)and (24) reveals HI_2 which is shown in 
TABLE I. Then, again by looking into the past, HC_2 can also be 
determined similarly, using (25) and (26), with the result shown 
in TABLE I. Simulink source code for the 2nd-order algorithm 
was given in chapter 3 of [14]. 
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The expression for HI_2 in TABLE I is interesting in that it is 
heavily asymmetric. Since the boxcar filter is ideally 
symmetrical, it raises the possibility that a better filter could be 
built by manipulating the filter so that it looks more symmetrical. 

This can be done, by increasing the group delay of the filter from 
the ideal value of T/2, by TS/2. This is done by modifying the 
integrals (22) and (26), specifically by subtracting 0.5 from all 
of the upper and lower bounds of the definite integrals, and re-
evaluating to give alternative versions of HI_2S and HC_2S, both 
shown in TABLE I, leading to an alternative boxcar response 
H2S. Graphical representations of the processes to achieve H2 and 
H2S are shown in Fig. 5 & Fig. 6. 

 
Fig. 5 Example of the 2nd-order method H2 with T = 8.4 TS 

 
Fig. 6 Example of the 2nd order method H2S (symmetrical) with T = 8.4 TS 

III. COMPARISONS OF PERFORMANCE & CHOICE OF ALGORITHM 

Before examining the overall transfer functions Hvv it is 
useful to examine just the transfer functions  HI_vv(z-1)/zTS, i.e. 
HI_vv/HI_BE, the adjustments made to the integral/accumulation 
expression compared to the basic backward Euler expression, 
due to the curve fitting regime. These are shown in Fig. 7. The 
trapezoidal integration tends to provide the best rejection of 
noise at higher frequencies towards Nyquist. Meanwhile, the 
heavily unequal weights [1,22,1]/24 of the �more symmetric� 
version of the 2nd order curve fit HI_2S provide a performance not 
dissimilar to that of the simple backward Euler method. The 
�normal� 2nd order curve fit also provides significantly less 
attenuation at Nyquist than the trapezoidal method. 

 

Fig. 7 Curve fitting expression 
BEIvvI HH __

response, fS=750 Hz. 



 

TABLE I.  SUMMARY OF CANDIDATE BOXCAR IMPLEMENTATIONS, TRANSFER FUNCTIONS AND GROUP DELAYS 
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The next 4 bode plots show the relative performance of the 
whole boxcar responses. Fig. 8 and Fig. 9 show performance for 
a very slow sample rate of 750 Sa/s (nominally 15 Sa/cycle at 
50 Hz). Fig. 10 and Fig. 11 show performance for a much higher 
sample rate of 10 kSa/s (nominally 200 Sa/cycle at 50 Hz). All 
these 4 figures are produced by picking an awkward boxcar 
length so that x=0.75 and the performance of the HC_vv 
components are important to achieve good rejection at the 
notches at f = n/T. Other values of non-zero x such as 0.5 are also 
of interest, giving similar results. When x=0, all methods 
produce ideal notch rejection at f = n/T, while high-frequency 
noise rejection remains consistent with Fig. 7, Fig. 8 and Fig. 11. 

At the low sample rates, Fig. 8 shows that the backward 
Euler and 2nd order methods provide slightly worse performance 
than the trapezoidal method at the higher frequencies towards 
Nyquist. Fig. 9 shows that the backward Euler method provides 

very poor rejection at the second notch (crucial for image 
rejection inside a DFT) when x≠0. Fig. 9 also shows that at low 
sample rates, the 2nd order (less symmetric) method provides the 
best notch rejection, being marginally better than the trapezoidal 
method. However, the 2nd order method with the more 
symmetric integration function is worse than all other methods 
except the backward Euler. This is somewhat of a surprise. 

At higher sample rates, Fig. 10 shows that the notch 
performance of all methods except the backward Euler becomes 
essentially the same, while Fig. 11 shows that, as for the lower 
sample rates, the trapezoidal method is always the best practical 
filter at rejecting noise and high-frequency components near 
Nyquist. If additional rejection at Nyquist is required, it can be 
done by adding the simple HN filter to make HTN, which adds just 
a half-sample group delay. However, if multiple boxcar filters 
are cascaded, even without HN, the combined attenuation at 



Nyquist may already be several hundred dB, giving ample 
attenuation for a practical application without adding HN. 

 
Fig. 8 Response, T=1/49.1803 s, fS=750 Hz, m=15.25, x=0.75 

 
Fig. 9 Response at 2nd notch, T=1/49.1803 s, fS=750 Hz, m=15.25, x=0.75 

 
Fig. 10 Response at 2nd notch, T=1/49.9376 s, fS=10 kHz, m=200.25, x=0.75 

 
Fig. 11 Response near-Nyquist, T=1/49.9376 s, fS=10 kHz, m=200.25, x=0.75 

IV. CONCLUSIONS AND FURTHER WORK 

The conclusion from this work is that the digital boxcar filter 
using trapezoidal integration is normally the most appropriate, 
since it offers high accuracy (at anything other than the lowest 
sample rates), the correct group delay, a low level of processing, 
and a reasonable attenuation at the Nyquist frequency. If, 
however, sample rate is low compared to the input signal 
frequency (~15 samples/cycle or less), the 2nd order method may 
be more appropriate, giving deeper and more accurate notches 
(zeros), at the expense of some additional computational 
intensity and slightly poorer rejection at the Nyquist frequency. 
For all methods, if required, an additional zero can always be 
placed at the Nyquist frequency by cascading an additional 2-
sample filter ( ) 21 1−

+ z , with minimal execution time or group 

delay penalties. 
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