32 research outputs found

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

    Get PDF
    BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765

    Dengue: a continuing global threat

    Full text link

    The Lipopolysaccharide of Haemophilus parainfluenzae

    No full text
    Haemophilus parainfluenzae (Hp) and H. influenzae (Hi) are closely related members of the Pasteurellaceae family and are common commensal bacteria of the human nasopharynx. Whilst Hi is frequently implicated in meningitis, otitis media and respiratory tract infections, reports of pathogenic behaviour by Hp are very rare. Lipopolysaccharide (LPS) is a key component of the Gram negative cell wall, and its structure influences the ability of Haemophilus to interact with the host and evade immune clearance. A better understanding of the differences in LPS structure between Hi and Hp could help to ascertain which parts of the molecule are important for commensal and pathogenic behaviour.Hi LPS comprises lipid A, a conserved oligosaccharide inner core, and an oligosaccharide outer core that differs between strains. The latter is partly phase variable by the slipped strand mispairing during replication of DNA repeat tracts within several LPS biosynthesis genes. Very little was known about LPS in Hp so we investigated its biosynthesis and structure in a panel of 20 Hp carriage isolates. Using PCR, DNA sequencing and Southern analysis we demonstrated that Hp possesses homologues of the Hi lipid A and inner core LPS synthesis genes and a few of the genes for outer core synthesis; however, homologues of the Hi phase variable outer core genes were largely absent and did not contain repeat tracts. The results of immunoblotting and collaborative structural analysis were consistent with this data. Phosphocholine, a phase variable Hi LPS epitope that has been implicated in otitis media, was found to be absent in Hp LPS due to the lack of four genes required for its biosynthesis and incorporation. The introduction of these genes into Hp led to the phase variable addition of phosphocholine to the LPS, indicating that there is no fundamental reason why Hp could not use a similar mechanism of variation to Hi if it was advantageous to do so.SDS-PAGE data suggested the presence of O-antigens (repeated chains of sugars) in many of the Hp strains, an unusual feature for Haemophilus, and all of the strains were found to contain a potential O-antigen synthesis locus. Each locus encodes homologues of several glycosyltransferases in addition to either the Wzy polymerase- or ABC transporter-dependent mechanisms of O-antigen synthesis and transport. Comparisons of wild type and isogenic mutant strains showed that the O-antigen enhances resistance to complement-mediated killing and appears to affect adhesion to epithelial cells in vitro. Hp is a successful commensal organism but lacks the flexibility of adapting its LPS using repeat-mediated phase variation, potentially limiting its range of host niches

    The lipopolysaccharide of Haemophilus parainfluenzae

    No full text
    Haemophilus parainfluenzae (Hp) and H. influenzae (Hi) are closely related members of the Pasteurellaceae family and are common commensal bacteria of the human nasopharynx. Whilst Hi is frequently implicated in meningitis, otitis media and respiratory tract infections, reports of pathogenic behaviour by Hp are very rare. Lipopolysaccharide (LPS) is a key component of the Gram negative cell wall, and its structure influences the ability of Haemophilus to interact with the host and evade immune clearance. A better understanding of the differences in LPS structure between Hi and Hp could help to ascertain which parts of the molecule are important for commensal and pathogenic behaviour. Hi LPS comprises lipid A, a conserved oligosaccharide inner core, and an oligosaccharide outer core that differs between strains. The latter is partly phase variable by the slipped strand mispairing during replication of DNA repeat tracts within several LPS biosynthesis genes. Very little was known about LPS in Hp so we investigated its biosynthesis and structure in a panel of 20 Hp carriage isolates. Using PCR, DNA sequencing and Southern analysis we demonstrated that Hp possesses homologues of the Hi lipid A and inner core LPS synthesis genes and a few of the genes for outer core synthesis; however, homologues of the Hi phase variable outer core genes were largely absent and did not contain repeat tracts. The results of immunoblotting and collaborative structural analysis were consistent with this data. Phosphocholine, a phase variable Hi LPS epitope that has been implicated in otitis media, was found to be absent in Hp LPS due to the lack of four genes required for its biosynthesis and incorporation. The introduction of these genes into Hp led to the phase variable addition of phosphocholine to the LPS, indicating that there is no fundamental reason why Hp could not use a similar mechanism of variation to Hi if it was advantageous to do so. SDS-PAGE data suggested the presence of O-antigens (repeated chains of sugars) in many of the Hp strains, an unusual feature for Haemophilus, and all of the strains were found to contain a potential O-antigen synthesis locus. Each locus encodes homologues of several glycosyltransferases in addition to either the Wzy polymerase- or ABC transporter-dependent mechanisms of O-antigen synthesis and transport. Comparisons of wild type and isogenic mutant strains showed that the O-antigen enhances resistance to complement-mediated killing and appears to affect adhesion to epithelial cells in vitro. Hp is a successful commensal organism but lacks the flexibility of adapting its LPS using repeat-mediated phase variation, potentially limiting its range of host niches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Haemophilus parainfluenzae expresses diverse lipopolysaccharide O-antigens using ABC transporter and Wzy polymerase-dependent mechanisms

    Get PDF
    Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host-bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of Fuc-NAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component

    Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.

    Get PDF
    A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.COG-UK is supported by funding from the MRC, part of UKRI; the NIHR; and Genome Research Limited, operating as the Wellcome Sanger Institute
    corecore