73 research outputs found

    The impact and pattern of gene and genome duplication in the history of increasing organismal complexity

    Full text link
    The increase in phenotypic or morphological complexity in organisms may stem from a corresponding increase in the complexity of the underlying genetic architecture, driven by the process of gene duplication. Gene duplication is a mutational mechanism that can impact the genome through the gradual birth and death of individual genes or clusters of genes, and through infrequent episodic events of whole genome duplication. Functional and pleiotropic differences among genes may impact the probability of fixation of duplicated genes and the facility of gene families to record duplication events across deep history. Phylogenetic inference of the relationship among genes in multigene families has been used to reconstruct the history of duplication and subsequently to test hypotheses about the tempo and mode of these mutational mechanisms. We were unable to refute the hypothesis that one or two rounds of tetraploid evolution occurred subsequent to the origin of the lower deuterostomes and immediately preceding the origin of chordates. Our results suggest that the evolutionary history of gene families is defined by the nature of selection on individual genes. Genes embedded in highly constrained pleiotropic networks appear to have different patterns of diversification than genes subject to lesser (or different) selective constraints

    Visualization of trans-Homolog Enhancer-Promoter Interactions at the Abd-B Hox Locus in the Drosophila Embryo

    Get PDF
    AbstractThe Hox gene Abdominal-B (Abd-B) controls the morphogenesis of posterior abdominal segments in Drosophila. Expression is regulated by a series of 3′ enhancers that are themselves transcribed. RNA FISH was used to visualize nascent transcripts associated with coding and noncoding regions of Abd-B in developing embryos. Confocal imaging suggests that distal enhancers often loop to the Abd-B promoter region. Surprisingly, enhancers located on one chromosome frequently associate with the Abd-B transcription unit located on the other homolog. These trans-homolog interactions can be interpreted as the direct visualization of a genetic phenomenon known as transvection, whereby certain mutations in Abd-B can be rescued in trans by the other copy of the gene. A 10 kb sequence in the 3′ flanking region mediates tight pairing of Abd-B alleles, thereby facilitating trans looping of distal enhancers. Such trans-homolog interactions might be a common mechanism of gene regulation in higher metazoans

    MicroRNAs from the same precursor have different targeting properties

    Get PDF
    UnlabelledBackgroundThe processing of a microRNA results in an intermediate duplex of two potential mature products that derive from the two arms (5' and 3') of the precursor hairpin. It is often suggested that one of the sequences is degraded and the other is incorporated into the RNA-induced silencing complex. However, both precursor arms may give rise to functional levels of mature microRNA and the dominant product may change from species to species, from tissue to tissue, or between developmental stages. Therefore, both arms of the precursor have the potential to produce functional mature microRNAs.ResultsWe have investigated the relationship between predicted mRNA targets of mature sequences derived from the 5' and 3' arms of the same pre-microRNAs. Using six state-of-the-art target prediction algorithms, we find that 5'/3' microRNA pairs target different sites in 3' untranslated regions of mRNAs. We also find that these pairs do not generally target overlapping sets of genes, or functionally related genes.ConclusionsWe show that alternative mature products produced from the same precursor microRNAs have different targeting properties and therefore different biological functions. These data strongly suggest that developmental or evolutionary changes in arm choice will have significant functional consequences

    MicroRNA evolution by arm switching

    Get PDF
    MicroRNAs (miRNAs) modulate transcript stability and translation. Functional mature miRNAs are processed from one or both arms of the hairpin precursor. The miR-100/10 family has undergone three independent evolutionary events that have switched the arm from which the functional miRNA is processed. The dominant miR-10 sequences in the insects Drosophila melanogaster and Tribolium castaneum are processed from opposite arms. However, the duplex produced by Dicer cleavage has an identical sequence in fly and beetle. Expression of the Tribolium miR-10 sequence in Drosophila S2 cells recapitulates the native beetle pattern. Thus, arm usage is encoded in the primary miRNA sequence, but outside the mature miRNA duplex. We show that the predicted messenger RNA targets and inferred function of sequences from opposite arms differ significantly. Arm switching is likely to be general, and provides a fundamental mechanism to evolve the function of a miRNA locus and target gene network

    Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters

    Get PDF
    The remarkable conservation of Hox clusters is an accepted but little understood principle of biology. Some organizational constraints have been identified for vertebrate Hox clusters, but most of these are thought to be recent innovations that may not apply to other organisms. Ironically, many model organisms have disrupted Hox clusters and may not be well-suited for studies of structural constraints. In contrast, the red flour beetle, Tribolium castaneum, which has a long history in Hox gene research, is thought to have a more ancestral-type Hox cluster organization. Here, we demonstrate that the Tribolium homeotic complex (HOMC) is indeed intact, with the individual Hox genes in the expected colinear arrangement and transcribed from the same strand. There is no evidence that the cluster has been invaded by non-Hox protein-coding genes, although expressed sequence tag and genome tiling data suggest that noncoding transcripts are prevalent. Finally, our analysis of several mutations affecting the Tribolium HOMC suggests that intermingling of enhancer elements with neighboring transcription units may constrain the structure of at least one region of the Tribolium cluster. This work lays a foundation for future studies of the Tribolium HOMC that may provide insights into the reasons for Hox cluster conservation

    MicroRNA evolution by arm switching

    Full text link

    Structure, evolution and function of the bi-directionally transcribed iab-4/iab-8 microRNA locus in arthropods

    Get PDF
    In Drosophila melanogaster, the iab-4/iab-8 locus encodes bi-directionally transcribed microRNAs that regulate the function of flanking Hox transcription factors. We show that bi-directional transcription, temporal and spatial expression patterns and Hox regulatory function of the iab-4/iab-8 locus are conserved between fly and the beetle Tribolium castaneum. Computational predictions suggest iab-4 and iab-8 microRNAs can target common sites, and cell-culture assays confirm that iab-4 and iab-8 function overlaps on Hox target sites in both fly and beetle. However, we observe key differences in the way Hox genes are targeted. For instance, abd-A transcripts are targeted only by iab-8 in Drosophila, whereas both iab-4 and iab-8 bind to Tribolium abd-A. Our evolutionary and functional characterization of a bi-directionally transcribed microRNA establishes the iab-4/iab-8 system as a model for understanding how multiple products from sense and antisense microRNAs target common sites

    Clusters of microRNAs emerge by new hairpins in existing transcripts

    Get PDF
    Genetic linkage may result in the expression of multiple products from a polycistronic transcript, under the control of a single promoter. In animals, protein-coding polycistronic transcripts are rare. However, microRNAs are frequently clustered in the genomes of animals, and these clusters are often transcribed as a single unit. The evolution of microRNA clusters has been the subject of much speculation, and a selective advantage of clusters of functionally related microRNAs is often proposed. However, the origin of microRNA clusters has not been so far explored. Here, we study the evolution of microRNA clusters in Drosophila melanogaster. We observed that the majority of microRNA clusters arose by the de novo formation of new microRNA-like hairpins in existing microRNA transcripts. Some clusters also emerged by tandem duplication of a single microRNA. Comparative genomics show that these clusters are unlikely to split or undergo rearrangements. We did not find any instances of clusters appearing by rearrangement of pre-existing microRNA genes. We propose a model for microRNA cluster evolution in which selection over one of the microRNAs in the cluster interferes with the evolution of the other linked microRNAs. Our analysis suggests that the study of microRNAs and small RNAs must consider linkage associations

    Functional Shifts in Insect microRNA Evolution

    Get PDF
    MicroRNAs (miRNAs) are short endogenous RNA molecules that regulate gene expression at the posttranscriptional level and have been shown to play critical roles during animal development. The identification and comparison of miRNAs in metazoan species are therefore paramount for our understanding of the evolution of body plans. We have characterized 203 miRNAs from the red flour beetle Tribolium castaneum by deep sequencing of small RNA libraries. We can conclude, from a single study, that the Tribolium miRNA set is at least 15% larger than that in the model insect Drosophila melanogaster (despite tens of high-throughput sequencing experiments in the latter). The rate of birth and death of miRNAs is high in insects. Only one-third of the Tribolium miRNA sequences are conserved in D. melanogaster, and at least 18 Tribolium miRNAs are conserved in vertebrates but lost in Drosophila. More than one-fifth of miRNAs that are conserved between Tribolium and Drosophila exhibit changes in the transcription, genomic organization, and processing patterns that lead to predicted functional shifts. For example, 13% of conserved miRNAs exhibit seed shifting, and we describe arm-switching events in 11% of orthologous pairs. These shifts fundamentally change the predicted targets and therefore function of orthologous miRNAs. In general, Tribolium miRNAs are more representative of the insect ancestor than Drosophila miRNAs and are more conserved in vertebrates

    Sex-Biased Expression of MicroRNAs in Schistosoma mansoni

    Get PDF
    Schistosomiasis is an important neglected tropical disease caused by digenean helminth parasites of the genus Schistosoma. Schistosomes are unusual in that they are dioecious and the adult worms live in the blood system. MicroRNAs play crucial roles during gene regulation and are likely to be important in sex differentiation in dioecious species. Here we characterize 112 microRNAs from adult Schistosoma mansoni individuals, including 84 novel microRNA families, and investigate the expression pattern in different sexes. By deep sequencing, we measured the relative expression levels of conserved and newly identified microRNAs between male and female samples. We observed that 13 microRNAs exhibited sex-biased expression, 10 of which are more abundant in females than in males. Sex chromosomes showed a paucity of female-biased genes, as predicted by theoretical evolutionary models. We propose that the recent emergence of separate sexes in Schistosoma had an effect on the chromosomal distribution and evolution of microRNAs, and that microRNAs are likely to participate in the sex differentiation/maintenance process
    corecore