523 research outputs found

    Optimizing the Optoelectronic Properties of Conjugated Polymers Through Metal-Ligand Coordination

    Get PDF
    From the phones at our fingertips to the solar panels on our roofs, humans are becoming increasingly dependent on electronics for information, entertainment, and to power their daily lives. Further advancements are paving the way for a new age of high-performance, flexible devices. Organic electronics made from conjugated semiconducting polymers are showing great potential as a softer and more processable material than brittle silicon used in today’s devices, while exhibiting comparable charge transport to silicon. However, one key challenge with these organic polymers is the difficulty to control their optical properties and charge transport in devices. Electronics must interact with and alter their lighting while efficiently conducting electricity. Therefore, the desired material must be tuneable to precisely control these important properties. In this research, a novel organic diketopyrrolopyrrole-based conjugated polymer is presented as a leading candidate for optoelectronics. This polymer uses noncovalent metal-ligand interactions, enabled by using specific terpyridine ligands, to fine-tune its ability to emit light and transport electrons. Various transition metal ions, including Fe2+, Co2+, Zn2+, and Mn2+, were introduced into the polymer to determine which species would coordinate most efficiently with the ligand, altering its optical nature. Results from fluorescence and absorption spectroscopies showed that the manganese ion coordinated the weakest to the ligand, while iron and cobalt ions bound the most efficiently and optimally altered emission intensity. Thus, iron and cobalt were identified as great candidates for metal-ligand coordination within the polymer for optimal optoelectronic capabilities. These findings contribute to the continued pursuit of creating efficient organic optoelectronics through the promising technique of metal-ligand interactions. Keywords: organic electronics, conjugated polymer, optoelectronics, metal-ligand interaction

    Deciphering metal-induced oxidative damages on glycated albumin structure and function

    Get PDF
    Background: Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal- and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects. Methods: Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements were used. Cellular assays were used to gain functional information concerning antioxidant activity of oxidized albumins. Results: Both metals promoted inhibition of albumin glycation associated with an enhanced aggregation and oxidation process. Metal ions gave rise to the formation of β-amyloid type aggregates in albumin exhibiting impaired antioxidant properties and toxic activity to murine microglia cells (BV2). The differential efficiency of both metal ions to inhibit albumin glycation, to promote aggregation and to affect cellular physiology is compared. Conclusions and general significance: Considering the key role of oxidized protein in pathology complications, glycation-mediated and metal ion-induced impairment of albumin properties might be important parameters to be followed and fought. © 2013 Elsevier B.V

    Subsurface damage measurement of ground fused silica parts by HF etching techniques

    Get PDF
    International audienceDetection and measurement of subsurface damage of ground optical surfaces are of major concern in the assessment of high damage thresholds fused silica optics for high power laser applications. We herein detail a new principle of SSD measurement based on the utilization of HF acid etching. We also review and compare different subsurface damage (SSD) characterization techniques applied to ground and fine ground fused silica samples. We demonstrate good concordance between the different measurements

    Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene

    Full text link
    In the presence of a perpendicular magnetic field, ABC-stacked trilayer graphene's chiral band structure supports a 12-fold degenerate N=0 Landau level (LL). Along with the valley and spin degrees of freedom, the zeroth LL contains additional quantum numbers associated with the LL orbital index % n=0,1,2. Remote inter-layer hopping terms and external potential difference ΔB\Delta_{B} between the layers lead to LL splitting by introducing a gap % \Delta_{LL} between the degenerate zero-energy triplet LL orbitals. Assuming that the spin and valley degrees of freedom are frozen, we study the phase diagram of this system resulting from competition of the single particle LL splitting and Coulomb interactions within the Hartree-Fock approximation at integer filling factors. Above a critical value ΔLLc\Delta_{LL}^{c} of the external potential difference i,e, for ΔLL>ΔLLc|\Delta_{LL}| >\Delta_{LL}^{c}, the ground state is a uniform quantum Hall state where the electrons occupy the lowest unoccupied LL orbital index. For ΔLL<ΔLLc|\Delta_{LL}| <\Delta_{LL}^{c} (which corresponds to large positive or negative values of ΔB\Delta_{B}) the uniform QH state is unstable to the formation of a crystal state at integer filling factors. This phase transition should be characterized by a Hall plateau transition as a function of ΔLL\Delta_{LL} at a fixed filling factor. We also study the properties of this crystal state and discuss its experimental detection.Comment: 16 pages with 13 figure

    Terminalia bentzoë, a Mascarene Endemic Plant, Inhibits Human Hepatocellular Carcinoma Cells Growth In Vitro via G0/G1 Phase Cell Cycle Arrest

    Get PDF
    Tropical forests constitute a prolific sanctuary of unique floral diversity and potential medicinal sources, however, many of them remain unexplored. The scarcity of rigorous scientific data on the surviving Mascarene endemic taxa renders bioprospecting of this untapped resource of utmost importance. Thus, in view of valorizing the native resource, this study has as its objective to investigate the bioactivities of endemic leaf extracts. Herein, seven Mascarene endemic plants leaves were extracted and evaluated for their in vitro antioxidant properties and antiproliferative effects on a panel of cancer cell lines, using methyl thiazolyl diphenyl-tetrazolium bromide (MTT) and clonogenic cell survival assays. Flow cytometry and comet assay were used to investigate the cell cycle and DNA damaging effects, respectively. Bioassay guided-fractionation coupled with liquid chromatography mass spectrometry (MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopic analysis were used to identify the bioactive compounds. Among the seven plants tested, Terminaliabentzoë was comparatively the most potent antioxidant extract, with significantly (p &lt; 0.05) higher cytotoxic activities. T. bentzoë extract further selectively suppressed the growth of human hepatocellular carcinoma cells and significantly halted the cell cycle progression in the G0/G1 phase, decreased the cells’ replicative potential and induced significant DNA damage. In total, 10 phenolic compounds, including punicalagin and ellagic acid, were identified and likely contributed to the extract’s potent antioxidant and cytotoxic activities. These results established a promising basis for further in-depth investigations into the potential use of T. bentzoë as a supportive therapy in cancer management

    A promising method for efficient analysis of secondary metabolites in plant extracts by a matrix-free Desorption/Ionization on self-Assembled Monolayer Surfaces (DIAMS) technique

    Get PDF
    Plants are one of the major sources for the biologically active organic compounds and play a key role in medicinal chemistry for the treatment of various diseases [1]. DIAMS method is able to determine the secondary metabolites of complex vegetal extracts. The high throughput analyses of vegetal extracts are relatively difficult to perform in MALDI mass spectrometry, since the preparation of the sample involves the co-crystallization of the matrix with the analyte. Moreover irradiation of the matrix ion produces many low-m/z vs high-intensity ions preventing the detection of low molecular weight molecules such as secondary metabolites. We have developed a matrix-free alternative to MALDI analyses by the means of an original desorption/ionization on self-assembled monolayers surfaces (DIAMS) technique [2]. Monolayers were formed by using novel thiophene and coumarin-triazole analogues that absorbs the laser beam at 337nm. We herein disclose our findings with respect to the DIAMS method which is well suitable for the detection and quantification of the low molecular weight compounds that are present in plant extracts. Some of the isoquinoline alkaloids from the root extracts of Thalictrum flavum have been detected by the DIAMS method. Indeed, this technique would be promising suitable for the qualitative and quantitative analysis of polar and non-polar organic components that are widely distributed in the plants, without any preliminary chromatographic resolution [3]

    Separate and combined analysis of successive dependent outcomes after breast-conservation surgery: recurrence, metastases, second cancer and death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of recurrent events, research studies commonly count only the first occurrence of an outcome in a subject. However this approach does not correctly reflect the natural history of the disease. The objective is to jointly identify prognostic factors associated with locoregional recurrences (LRR), contralateral breast cancer, distant metastases (DM), other primary cancer than breast and breast cancer death and to evaluate the correlation between these events.</p> <p>Methods</p> <p>Patients (n = 919) with a primary invasive breast cancer and treated in a cancer center in South-Western France with breast-conserving surgery from 1990 to 1994 and followed up to January 2006 were included. Several types of non-independent events could be observed for the same patient: a LRR, a contralateral breast cancer, DM, other primary cancer than breast and breast cancer death. Data were analyzed separately and together using a random-effects survival model.</p> <p>Results</p> <p>LRR represent the most frequent type of first failure (14.6%). The risk of any event is higher for young women (less than 40 years old) and in the first 10 years of follow-up after the surgery. In the combined analysis histological tumor size, grade, number of positive nodes, progesterone receptor status and treatment combination are prognostic factors of any event. The results show a significant dependence between these events with a successively increasing risk of a new event after the first and second event. The risk of developing a new failure is greatly increased (RR = 4.25; 95%CI: 2.51-7.21) after developing a LRR, but also after developing DM (RR = 3.94; 95%CI: 2.23-6.96) as compared to patients who did not develop a first event.</p> <p>Conclusion</p> <p>We illustrated that the random effects survival model is a more satisfactory method to evaluate the natural history of a disease with multiple type of events.</p

    Image Filtering Techniques for Object Recognition in Autonomous Vehicles

    Get PDF
    The deployment of autonomous vehicles has the potential to significantly lessen the variety of current harmful externalities, (such as accidents, traffic congestion, security, and environmental degradation), making autonomous vehicles an emerging topic of research. In this paper, a literature review of autonomous vehicle development has been conducted with a notable finding that autonomous vehicles will inevitably become an indispensable future greener solution. Subsequently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system. While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection filtering techniques to optimize the performance and sustainability of those 2 models. The results demonstrate that these filters could increase the mean average precision by up to 11.81%, reduce detection time by up to 43.98%, and significantly reduce energy consumption by up to 50.69% when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are promising and could be extended to other domains for semantic understanding of the environment. Additionally, various filtering algorithms for multiple object detection and classification could be applied to other areas. Different recommendations and future work have been clearly defined in this study

    What difference does ("good") HRM make?

    Get PDF
    The importance of human resources management (HRM) to the success or failure of health system performance has, until recently, been generally overlooked. In recent years it has been increasingly recognised that getting HR policy and management "right" has to be at the core of any sustainable solution to health system performance. In comparison to the evidence base on health care reform-related issues of health system finance and appropriate purchaser/provider incentive structures, there is very limited information on the HRM dimension or its impact. Despite the limited, but growing, evidence base on the impact of HRM on organisational performance in other sectors, there have been relatively few attempts to assess the implications of this evidence for the health sector. This paper examines this broader evidence base on HRM in other sectors and examines some of the underlying issues related to "good" HRM in the health sector. The paper considers how human resource management (HRM) has been defined and evaluated in other sectors. Essentially there are two sub-themes: how have HRM interventions been defined? and how have the effects of these interventions been measured in order to identify which interventions are most effective? In other words, what is "good" HRM? The paper argues that it is not only the organisational context that differentiates the health sector from many other sectors, in terms of HRM. Many of the measures of organisational performance are also unique. "Performance" in the health sector can be fully assessed only by means of indicators that are sector-specific. These can focus on measures of clinical activity or workload (e.g. staff per occupied bed, or patient acuity measures), on measures of output (e.g. number of patients treated) or, less frequently, on measures of outcome (e.g. mortality rates or rate of post-surgery complications). The paper also stresses the need for a "fit" between the HRM approach and the organisational characteristics, context and priorities, and for recognition that so-called "bundles" of linked and coordinated HRM interventions will be more likely to achieve sustained improvements in organisational performance than single or uncoordinated interventions

    Antirhea borbonica Aqueous Extract Protects Albumin and Erythrocytes from Glycoxidative Damages

    Get PDF
    Diabetes constitutes a major health problem associated with severe complications. In hyperglycemic conditions, chronically increased oxidation and glycation of circulating components lead to advanced glycation end-products (AGEs) formation, a key contributor in diabetes complication progression. In line with literature documenting the beneficial properties of herbal teas, this study evaluates the antioxidant/glycant properties of Antirhea borbonica (Ab). Ab aqueous extract effects were tested on human albumin or erythrocytes submitted to methyl glyoxal-mediated glycoxidative damages. By using mass spectrometry, Ab aqueous extracts revealed to be rich in polyphenols. All tested biomarkers of oxidation and glycation, such as AGE, ketoamine, oxidized thiol groups, were decreased in albumin when glycated in the presence of Ab aqueous extract. Ab extract preserve erythrocyte from methylglyoxal (MGO)-induced damages in terms of restored membrane deformability, reduced oxidative stress and eryptosis phenomenon. Antioxidant capacities of Ab extract on erythrocytes were retrieved in vivo in zebrafish previously infused with MGO. These results bring new evidences on the deleterious impacts of glycation on albumin and erythrocyte in diabetes. Furthermore, it reveals antioxidant and antiglycant properties of Ab that could be used for the dietary modulation of oxidative stress and glycation in hyperglycemic situations
    corecore