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Abstract: The deployment of autonomous vehicles has the potential to significantly lessen the

variety of current harmful externalities, (such as accidents, traffic congestion, security, and envi-

ronmental degradation), making autonomous vehicles an emerging topic of research. In this paper,

a literature review of autonomous vehicle development has been conducted with a notable finding

that autonomous vehicles will inevitably become an indispensable future greener solution. Subse-

quently, 5 different deep learning models, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3,

and InceptionV4, have been built and analyzed for 2-D object recognition in the navigation system.

While testing on the BDD100K dataset, YOLOv5s and EfficientNet-B7 appear to be the two best

models. Finally, this study has proposed Hessian, Laplacian, and Hessian-based Ridge Detection

filtering techniques to optimize the performance and sustainability of those 2 models. The results

demonstrate that these filters could increase the mean average precision by up to 11.81%, reduce

detection time by up to 43.98%, and significantly reduce energy consumption by up to 50.69%

when applied to YOLOv5s and EfficientNet-B7 models. Overall, all the experiment results are

promising and could be extended to other domains for semantic understanding of the environment.

Additionally, various filtering algorithms for multiple object detection and classification could be

applied to other areas. Different recommendations and future work have been clearly defined in

this study
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1 Introduction

Unlike traditional vehicles, autonomous vehicles [Yair, 2022] are land-based vehicles
integrating vehicular automation [Francis and Anoop, 2014] that can sense their sur-
roundings and operate securely [Hu et al., 2020a] with minimal or no human intervention
[Brummelen et al., 2018]. To achieve this, autonomous vehicles employ a fully or par-
tially automated driving system that enables them to adapt to external situations similar
to a skilled driver [Yair, 2022]. The autonomous driving system incorporates a range of
sensors to sense its environment, including GPS (Global Positioning System), thermo-
graphic cameras, radar, sonar, odometry, LiDAR (light detection and ranging), and IMU
(Inertial Measurement Units) [Hu et al., 2020a, Marchegiani and Fafoutis, 2022, Thrun,
2010, Feng and Liu, 2019, Jedrasiak et al., 2013]. Traffic signals are normally detected
by video cameras, which could also recognize other vehicles, street signs, and pedestrians.
Radar sensors focus on the location and movement of surrounding objects. Meanwhile,
LiDAR sensors assess distances, detect road boundaries, and recognize lane markers by
bouncing light pulses off the car’s environment. Automobiles’ wheels are also equipped
with ultrasonic sensors to detect obstacles and other vehicles while parking [Schwarting
et al., 2018].

Those sensory data are analyzed and interpreted by cutting-edge control systems to
build a map of the surrounding environment for planning/executing relevant navigation
routes, avoiding obstacles, and recognizing essential signs [Hu et al., 2021]. The systems
then issue instructions to the car’s actuators, which regulate steering, acceleration, and
braking [Yair, 2022]. The program could comply with traffic regulations and avoid
obstacles due to its object identification capabilities, obstacle avoidance algorithms, hard-
coded rules, and predictive modeling [Friedrich, 2016]. Notably, precise scene perception
and accurate localization are critical prerequisites for effective and safe driverless car
navigation systems. These 2 functions must accurately obtain and evaluate data gathered
about real surroundings [Nguyen and Le, 2013]. To achieve this, multiple primary sensors,
such as LiDAR and digital cameras, are installed on autonomous vehicles to collect
precise contextual data.

In general, Deep Learning models have been widely applied in autonomous cars
[Uçar et al., 2017] with 3 major tasks: segmentation, detection, and classification [Guan
et al., 2016, Hien, 2022]. These models incur a variety of data source inputs (e.g., 1-D
speech, 2-D pictures or videos, 3-D CAD (Computer-Aided Design), and 3-D LiDAR
point cloud) [Wiseman, 2022] which is the primary focus of most research [Bagloee
et al., 2016]. However, technological limitations and the high cost of proprioceptive
sensors have a significant impact on the implementation of fully self-driving systems
[Wiseman, 2022].

– Firstly, one of the most serious concerns is incorrect object detection and classifica-
tion [Bagloee et al., 2016]. The data generated by various sensors is accumulated and
processed by the autonomous system. However, with just a few pixels of variation
in an image created by a digital camera, a vehicle may mistake a stop sign for a
different sign such as a speed restriction sign, which could be potentially dangerous.
If the algorithm similarly wrongly identifies a pedestrian as a traffic light, it would
not expect it to move [Pozna and Antonya, 2016]. Therefore, object recognition and
classification are critical for research relating to autonomous vehicles and this is the
driver of this research.

– Secondly, a majority of objects, including vehicles, street signs, and pedestrians, are
identified and classified from image data by digital cameras due to their low cost
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and high efficiency [Vivacqua et al., 2017]. Camera-based vision is comparable to
that of a human driver and has become the most widely utilized data in perception
tasks using 2-D appearance-based representation [Paya et al., 2009]. Nevertheless,
poor image quality acquired under extreme conditions (e.g., low illumination, rain,
fog/mist/haze, snowstorms, and sandstorms) would adversely affect the performance
of deep learning models [Ondrus et al., 2020]. Consequently, there is a need to
employ different filtering techniques to enhance the quality of the images to improve
the deep learning models.

– Thirdly, it is essential to monitor the energy consumption of ICT programs and
applications in order to explore energy efficiency and its sustainable co-existence
with the hardware [Fettweis and Zimmermann, 2008]. Deep learning technologies
have been employed extensively across different areas and have emerged as the
leading technology in the ICT sector [Haldorai et al., 2021]. However, most deep
learning studies continue to primarily focus on precision without any consideration of
computing resources or energy consumption [Hilty et al., 2009]. The possible main
reason is that data scientists or AI experts do not prioritize sustainability because they
are yet to acquire software/application-related energy audit skills [García-Martín
et al., 2019]. To address this issue, this research discusses energy monitoring and
analysis for deep learning applications. Additionally, this research also aims to
conduct a further carbon footprint analysis, after optimizing deep learning models.

Those identified gaps have prompted this study to construct and evaluate different
Deep Learning models for 2-D Object Recognition in autonomous vehicles, with the
following set of Research Objectives (RO).

RO1: To conduct a critical autonomous vehicle-related literature review by address-
ing the following Research Questions (RQ).

– RQ1.1What are the potentials in the development context of autonomous vehicles?

– RQ1.2What are the challenges of autonomous vehicles?

– RQ1.3Will the environmental impact of autonomous vehicles be better compared
to the current traditional transportation mode?

– RQ1.4What deep learning applications and frameworks are currently applied in
autonomous vehicles?

– RQ1.5 How are current deep learning models employed in 2-D object recognition
for autonomous vehicles?

RO2: To identify a suitable dataset for preprocessing and analysis.
RO3: To propose a range of filtering techniques for deep learning models in object

recognition and classification in 2-D image data, optimizing their performance and
sustainability, with the following RQs:

– RQ3.1What are the performance and sustainability metrics for current state-of-the-
art deep learning models for 2-D object recognition?

– RQ3.2 Is the mean average precision, detection time, and sustainability of object
recognition by deep learning models with proposed filtering techniques better com-
pared to the models without them?
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RO4: To make evidence-based recommendations and inform future relevant research
work.

To address the above research objectives and questions, firstly, a literature review
is undertaken to furnish an overview of autonomous vehicles, their limitations, and
opportunities, as outlined in Section 2. Relevant research methodologies are discussed in
Section 3, followed by an investigation of the performance and sustainability of current
state-of-the-art deep learning models for 2-D image data object recognition in Section 4.
The novelty of this research includes proposing varying filtering techniques to enhance
digital camera images to achieve a better level of performance and sustainability (Section
5). Finally, pertinent discussion and evidence-based recommendations are presented in
Sections 6 and 7. The findings are promising, and they will lead to more studies in the
future, relating to various filtering algorithms for object detection and classification in
autonomous cars.

2 Literature Review

2.1 Overview of Autonomous Vehicles

2.1.1 Autonomous Vehicles

In contrast to traditional vehicles, autonomous vehicles [Yair, 2022] (also known as
driverless vehicles [Marchegiani and Fafoutis, 2022], self-driving cars [Mike et al., 2017],
robocars [Feng and Liu, 2019], or robotic cars [Thrun, 2010]) are land-based vehicles
that integrate vehicular automation [Francis and Anoop, 2014], sense their environment
and operate safely [Hu et al., 2020a] with no or minimal human intervention [Brummelen
et al., 2018]. Autonomous vehicles have been assessed in terms of their environmental
[Kopelias et al., 2020], practical [Fan and Xu, 2019], and human lifestyle impacts [Pozna
and Antonya, 2016]. It has been deployed in a variety of forms, including shared self-
driving taxis [Martinez and Viegas, 2017], and connected vehicle platoons [Hu et al.,
2020b].

A car navigation package incorporates a GPS [Rahiman and Zainal, 2013] and a
geographic information system (GIS) [Quan, 2019] to collect location data including
latitude and longitude coordinates. The positioning system determines the relative vehicle
location using an inertial navigation system (INS) [Liu et al., 2020]. Furthermore, an
autonomous car is equipped with an electronic map (EM) that saves data on road and
traffic infrastructure [Yuan et al., 2018]. Subsequently, the vehicle’s position is estimated
followed by relevant path planning [Chen et al., 2014].

The three basic channels for environment perception are visual perception, radar
perception, and laser perception [Zhu et al., 2017]. Radar perception involves the calcu-
lation of the distance via time estimation from which a radar sensor’s wave is transmitted
and reflected [Dickmann et al., 2016]. Reflection time and reflection signal strength
are exploited in laser perception for the creation of cloud data for target points such
as position, shapes, and states. Light Detection and Ranging (LiDAR) is used to avert
accidents and in emergency braking circumstances. LiDAR systems produce a high
number of laser pulses per second. After interacting with nearby objects, these pulses are
reflected. Calculations based on the speed of light and the distance traveled by the pulse
aid in the creation of a three-dimensional representation [Li and Ibanez-Guzman, 2020].

Self-driving cars normally use short-range vehicle-to-vehicle communication to con-
nect with their environment and other cars [Shieh et al., 2018]. This form of communication
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requires a real-time and redundant infrastructure [Hien et al., 2021a]. The concepts of
MANETs (mobile ad hoc networks) – the spontaneous establishment of a wireless net-
work of mobile devices – are applied to the transportation domain to produce vehicular
Ad hoc networks (VANETs). VANETs are used by connected automobiles to com-
municate with one another [Sood and Kanwar, 2014]. To facilitate the integration of
autonomous vehicles with existing connected vehicle technology, the autonomous vehi-
cle must employ the same communication standard that is currently used for connected
vehicle technology [Jiang et al., 2011].

Figure 1: Society of Automotive Engineers (SAE) 6 levels of driving automation.

The Society of Automotive Engineers (SAE) outlines a system named SAE J3016
(revised periodically) for 6 levels of driving automation, ranging from Level 0 (com-
pletely manual) to Level 5 (completely autonomous), as depicted in Figure 1 [Automo-
tive Engineers, 2021]. At the beginning of Level 3, the autonomous driving system can
monitor the driving surroundings. Autonomous cars would first advance through these 6
levels of driver-aid technologies before being able to operate on public roads [Cui and
Sabaliauskaite, 2017].

Numerous efforts to produce a fully autonomous commercial vehicle are in various
development phases but self-driving cars are yet to be offered to the general public
[Litman, 2017]. Level 3 and above vehicles continue to represent a minuscule fraction
of the market [Markets, 2021]. As of May 2022, Tesla is currently at Level 2 because
the autonomous system operates without driver supervision only under specific, and
constrained situations [Morris, 2021]. However, according to Elon Musk, Tesla is ex-
pected to reach Level 4 autonomy in 2022, when critical development milestones of full
self-driving (FSD) are accomplished to perform better than a human driver in averting
accidents [Fox, 2021]. Moreover, Ultra Cruise and Super Cruise, which are currently
offered on Cadillac and Chevrolet automobiles, are classified as Level 2 since the human
driver must maintain complete attention anytime [Ulitskaya, 2021]. Audi AI Traffic
Jam Pilot, first announced in 2017, is supposed to be the new A8’s highlight feature,
enabling the driver to assume control of the vehicle driving on the highway [Hartmann,
2017]. However, Audi has scrapped plans to update its premium A8 vehicle with Level 3
autonomous driving in April 2020, citing the need for governments to build a legislative
framework before making the technology available broadly [Davies, 2020]. Honda is
the first business to offer a legally authorized Level 3 vehicle in March 2021 [Honda,
2021]. Mercedes-Benz is the second company to receive legal approval for a Level 3
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that exceeded regulatory conditions in December 2021 [Group, 2021].
Due to current technological infrastructures and regulations, most Level 4 cars are

designed for ridesharing within a specific region [DeKort, 2019]. In 2020, Waymo, a
subsidiary of Alphabet, becomes the first manufacturer to offer an autonomous taxi trip
to the general public within the Phoenix region in Arizona. It is currently categorized
as a Level 4 since the driver is not needed in the vehicle despite a remote observer is
still required [Lee, 2020]. Magna, a Canadian automaker, has developed MAX4 - a
technology that allows Level 4 autonomy for both urban and motorway environments.
They are collaborating with Lyft to equip high-tech kits that transform cars into self-
driving vehicles [Magna, 2022]. Around the Tokyo 2020 Olympic Village, Toyota has
provided a potential Level 4 solution [Davis, 2021]. NAVYA, a French company, has
been manufacturing and marketing Level 4 taxis and shuttles in the United States, which
operate fully on electrical power with a peak speed of 55 mph [Vijayenthiran, 2018]. The
remaining manufacturers are still in the developing phase to launch a Level 4 autonomous
vehicle. For example, Volvo and Baidu form a strategic cooperation in 2018 to jointly
develop Level 4 electric vehicles for the Chinese robo-taxi sector [Bolduc, 2018]. In
terms of Level 5, fully autonomous vehicles are being tested in various parts of the world,
but none is currently accessible to the general public [Mane, 2021].

2.1.2 Potentials of Autonomous Vehicles

Driverless cars are currently being integrated into the product catalogs of all major
automotive original equipment manufacturers (OEMs) [Kang et al., 2019]. Furthermore,
recent advancements in VANET (Vehicular Ad hoc NETwork) applications and services
[Maalej et al., 2018] as well as connected automobile technology [Contreras-Castillo
et al., 2017], have prompted companies such as Google [Lee, 2020], car manufacturers
(e.g. Tesla [Fox, 2021] and Audi [Group, 2021] to research on self-driving automo-
bile technologies. Other leading manufacturers, including BMW, Ford, Mercedes-Benz,
Toyota, Hyundai, Kia, Honda, Nissan, Volvo, Volkswagen, and General Motors, have
undertaken programs such as semi-automatic pilot driving, emergency braking, smart
parking, and accident alert [Hussain and Zeadally, 2018]. Volkswagen and Microsoft
have broadened their cloud-based technology partnership to include autonomous ve-
hicle development [Lawrence, 2021]. This transition will significantly transform how
transportation solutions are accessed and utilized in the future, as well as how metropoli-
tan regions are planned, designed, and built to facilitate a cleaner and greener coexistence
of different transportation solutions such as automobiles, electric motorcycles, trucks,
public transportation, supply vehicles, and bicycles [Kang et al., 2019].

With continuous improvement, autonomous cars are steadily gaining acceptance
[Wiseman, 2022]. According to ABI Research, by 2025, there will be around 8 million
semi-autonomous or autonomous vehicles in operation [Research, 2018]. The Victoria
Transport Policy Institute anticipates that half of the new vehicles will be autonomous
by 2045, with half of the whole fleet operating autonomously by 2060 [Litman, 2017].
Meanwhile, the COVID-19 pandemic is depleting manufacturers’ financial reserves and
threatens to hinder progress in self-driving car research, a sector that Bain predicts will
reach a critical point in 2028 [Klaus et al., 2020].

Figure 2 depicts the forecast trend of market penetration and benefits for autonomous
vehicles. It is predicted that by 2045, half of the new cars will be autonomous. Level
4 autonomy is expected to alleviate driver stress and boost productivity, but the most
advantages associated with Level 5 autonomy would be autonomous pickup and drop-off
[Litman, 2017].
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Figure 2: Predictions of Fleet, Sales, Travel, and Benefits of Autonomous Vehicles

[Litman, 2017].

Autonomous vehicles would help ensure road safety, reduce traffic congestion, en-
hance security, and mitigate environmental degradation [Saeed et al., 2016]. Cities may
reduce carbon dioxide (CO2) emissions by up to 80% if they embrace three revolutions
(3R) within vehicle technology: electrification, automation, and ride-sharing. By 2050,
these three urban transportation revolutions might decrease the worldwide cost of auto-
mobiles, infrastructure, and transportation system operations by 40%, depending on the
successful deployment of ride-sharing and sustainable energy sources consumption [Lew
et al., 2018]. Moreover, autonomous vehicles can increase mobility and accessibility
[William and Pande, 2021], as well as optimize land use [Hawkins and Habib, 2019].

On the consumer side, autonomous vehicles have the potential to relieve vehicle
occupants of driving and navigation tasks, lowering stress, and enhancing productivity
[Ahangar et al., 2021]. This enables individuals to perform other duties, such as playing
and working while commuting or resting during their lengthy and stressful traffic travels
[Andrew, 2015]. Furthermore, self-driving automobiles eliminate limitations imposed by
driver ability or condition. It provides non-drivers with more autonomous mobility and
has the potential to minimize drivers’ chauffeuring duties and transit subsidy demands,
particularly for the blind, intoxicated, elderly, underage, and impaired people [Hussain
and Zeadally, 2018]. A driving test or driving license is no longer necessary since humans
do not need to drive [Ilková and Ilka, 2017]. With fewer traffic accidents and collisions,
autonomous vehicles can improve safety while also lowering crash risks and insurance
costs. Customers can also benefit from lower costs of taxi and commercial transportation
[Saeed et al., 2016].

On the social side, self-driving cars might become a solution to the problem of
depleted fuel economy, lessening the environmental burden of existing transportation
modes [Litman, 2017]. Moreover, autonomous vehicles may promote commercial car-
sharing and ride-sharing, lowering overall vehicle ownership and travel expenses [Mike
et al., 2017]. Better control of traffic flow will enhance road capacity and minimize traffic
congestion [Grigorescu et al., 2020]. Furthermore, self-driving vehicles may reduce the
demand for parking at destinations, leading to less parking costs [Saeed et al., 2016].
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2.1.3 Challenges of Autonomous Vehicles

There are numerous technological challenges associated with autonomous cars. The
distance traveled determines the system’s reliability. If no accident happens, a self-
driving car would need to travel approximately 291 million miles to achieve a 95 percent
equivalent to a certified human driver [Hars, 2016]. Systems programming will re-
quire an in-depth assessment of product development and supply chain [Nastjuk et al.,
2020]. Furthermore, AI is now incapable of successfully operating in densely populated
metropolitan regions [Ondrus et al., 2020]. Security and data privacy of autonomous cars
might be challenging due to mandatory location monitoring and data sharing [Bagloee
et al., 2016]. The car’s computer, as well as the communication system between vehicles,
might be compromised [Andrew, 2015]. Extreme weather, such as rain and snow, as
well as intentional interference (e.g., spoofing and jamming), may have an impact on the
car’s navigation and sensory systems [Bagloee et al., 2016]. It is crucial to determine
the severity of driving lane impediments, such as safely straddling a pothole or debris
or avoiding moving animals [Hars, 2016]. The car may be involved in an accident if
the main sensor and backup sensors break. High-definition maps may be required for
autonomous vehicles to correctly function. Where these maps may be out of date, they
must be able to assume sensible decisions. Additionally, some temporary construction
zones may not be updated on the maps and databases [Faisal et al., 2019]. Most impor-
tantly, for autonomous vehicles to correctly function, existing road infrastructure may
need to be upgraded [Gill, 2021].

Furthermore, the development of self-driving automobiles encounters a variety of
social obstacles. The high cost of creating and deploying self-driving cars poses as a
barrier, raising concerns about end-user affordability [Singh and Saini, 2021]. Further-
more, uncertainty about future regulations and policies may defer the deployment of
driverless cars on the road [Saeed et al., 2016]. Transparent as well as unambiguous
regulations and procedures that address potential consumers’ concerns are essential
[Ilková and Ilka, 2017]. Another important concern is how self-driving cars make a
judgment with justifiable behaviors in potentially challenging emergencies [Hussain and
Zeadally, 2018]. The development of self-driving automobiles may reduce the need for
cheap mobility choices such as walking, biking, and public transportation [Gill, 2021].
Another area of concern is the health consequences preferred vehicle usage over public
transportation and walking since less exercise leads to a rise in obesity [Bagloee et al.,
2016]. Reliance on autonomous driving results in less experienced drivers when manual
driving is required [Andrew, 2015]. Terrorists or other criminals might theoretically
employ driverless automobiles as autonomous explosives. As a result, there is a need
to build a legal framework and regulatory laws for self-driving automobiles [Andrew,
2015].

Though autonomous cars have made significant advances, there are still constraints
that must be appropriately addressed. Despite the potential difficulties of self-driving
cars, the common view is that the benefits outweigh the drawbacks [Ahangar et al., 2021].
While autonomous car companies have made great technological advances, people must
be prepared to adopt them. To ensure that technology continues to progress, the above-
mentioned technological and societal concerns must be addressed.

2.1.4 Carbon Footprint

Undeniably, environmental challenges caused by transportation becomes more severe as
urbanization advances [Vos et al., 2021]. Carbon dioxide (CO2) emissions (the highest
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contributor to climate change) have continued to rapidly rise, according to statistics from
Our World in Data. Humans currently release around 38.02 billion tons of CO2 each year
(data from 2020) [Data, 2022]. Notably, passenger and freight transportation contribute
20% to 30% of world greenhouse gases (GHG) [Straka et al., 2021], while passenger
vehicles account for 75% of overall CO2 emissions [Climate Change, 2019, Hien and
Kor, 2021]. Consequently, to address this global challenge, electric cars (EVs) will
ultimately replace fuel-powered cars.

a) The calculation of CO2 emissions of EVs

It takes a lot of energy to produce batteries made from materials such as lithium,
copper, and refined silicon. Thus, energy consumed for autonomous cars’ production,
and its associated CO2 emissions amount to half of its lifecycle emissions (i.e., 6.3
tons of CO2). For fossil-fuel vehicles, the amount represents only 17% of their lifecycle
emissions (i.e., 5.6 tons of CO2) [Bjørn and Hauschild, 2012]. Additionally, many electric
cars are likely to require battery replacement after several years. When emissions of the
replaced battery are included, the total CO2 produced by an electric vehicle jumps to
12.6 tons, compared to 5.6 tons for a gas vehicle. Furthermore, due to the energy required
for collecting and recycling metals in the battery, disposal would double the emissions
[Verma et al., 2021].

Considering charging, if the energy required to recharge the electric car comes
mostly from coal-fired power plants, it will emit about 15 ounces of CO2 for every
50,000 miles traveled, which is 3 ounces more than a comparable gas-powered car
[Bjørn and Hauschild, 2012]. If electric cars are driven for over 67,000 miles with green
electricity, they would be greener than gasoline cars. For instance, for a covered distance
of 90,000 miles, the EV emits 24% less CO2 than its gas-powered counterpart, which
is equivalent to 8.7 tons of CO2 [Bjørn and Hauschild, 2012]. Research has shown that
EVs driven by the current European energy mix would have a 10% to 24% lower global
warming potential than traditional diesel or gasoline vehicles with lifespans of 150,000
km [Hawkins et al., 2012].

b) The actual efficiency of EVs

Though Nissan claims that its EV efficiency is about 100 miles, the actual figure
is approximately 58 miles [Woodhill, 2011]. With cold weather or fast driving, this is
further reduced to 30 miles. On the other hand, a traditional vehicle could travel 300 to
400 miles. A Nissan’s Leaf takes 20 hours to fully recharge on 110V household power.
This duration can be reduced to 8 hours by using a 240V charger which costs more.
Although there are pricey 480V chargers that can reduce this duration to 4 hours, Nissan
has warned against it because of the negative impact of frequent use on the battery’s
life [Woodhill, 2011]. However, autonomous vehicles and their supply chain have the
potential to significantly increase toxicity, freshwater eutrophication, eco-toxicity, and
metal depletion [Hawkins et al., 2012].

c) Comparison of the environmental impact of an electric car and a gas-fueled car

When considering the mitigation of natural resource consumption, EVs will be the
preferred option [Swedish Environmental Research Institute, 2019]. By 2061, the world
will have to transition away from gas-powered vehicles, and coal-fueled power plant
industries to renewable energy sources [Jacobson, 2017]. The environmental impact of
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Figure 3: Deep Learning Applications and Different Data Sources for Autonomous

Vehicles.

autonomous cars will be minimal if they are charged with renewable solar and wind
energy [Roth, 2021].

The environmental impacts of autonomous vehicles depend on how electricity is
generated. If autonomous cars are charged with renewable solar and wind energy [Roth,
2021], they will be fairly clean. The environmental impacts of autonomous vehicles also
depend on the lifetime of the vehicle that customers use. The calculation of EVs’ CO2

emissions above estimated that when the electric car is driven for over 67,000 miles with
green power, such as renewable solar and wind energy, EVs are greener than gasoline
cars.

Overall, with the current context of major electricity production by coal-fired power
plants, electric cars may not seem to be a good solution. However, with a long-term vision
of using green power, EVs are proven to have real value in terms of being environmentally
friendly in the long run. Conditions for doing so include a substantial supply of green
energy, usage phase energy consumption, vehicle lifetime, battery replacement schedules,
and the transition from private vehicle use to shared and community use. Therefore,
improving the sustainability level of autonomous vehicles necessitates collaboration
on minimizing vehicle production supply chain impacts and encouraging clean power
sources in electrical infrastructure decision-making.

2.2 Deep Learning Applications in Different Data Sources for Autonomous Vehi-
cles

While self-driving cars are mainly still in their early stage, Deep Learning has been
exploited for Advanced Driver-Assistance Systems (ADAS) [Kukkala et al., 2018],
particularly for knowledge discovery and contextual awareness [Mike et al., 2017].
Recent developments in deep learning and sensor technologies in autonomous driving
have the potential to improve traffic efficiency, and road safety [Yair, 2022]. Deep
Learning models have been deployed for: segmentation, detection, and classification
[Guan et al., 2016]. These models utilize a diverse range of data sources, such as 1-D
speech, 2-D images or videos, 3-D CAD (Computer-Aided Design), and 3-D LiDAR
point cloud [Che et al., 2019] (Figure 3).
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Figure 4: Deep Learning-based Decision-Making Architectures: (a) sequential

perception-planning-action pipeline, (b) End2End system [Yan et al., 2017].

Precise scene perception and localization are important prerequisites for decision-
making, and the safety of autonomous vehicles. These two functionalities involve the
collection and analysis of detailed real-world environments-related data [Nguyen and Le,
2013] (e.g., LiDAR, radar, or digital camera data). Current 3-D deep learning frameworks
(i.e., extensions of 2-D structures) have been deployed for object recognition, scene
interpretation, classification, and semantic segmentation [Yan et al., 2017].

A Deep Learning-based decision-making architecture design for autonomous vehi-
cles might assume the form of a sequential perception-planning-action pipeline or an
End2End system. The sequential pipeline system is separated into 4 components that are
hierarchically organized: perception and localization, high-level path planning, low-level
path planning, and motion controllers. The core of the End2End system comprises deep
learning algorithms, as indicated in Figure 4. A safety monitor routinely ensures the
safety of each module [Grigorescu et al., 2020].

Google’s TensorFlow and Caffe frameworks employ deep learning algorithms to train
a neural network for object/ scene detection and learning so that autonomous vehicles
can operate appropriately [Gallardo et al., 2017]. They may also be utilized for lane
identification, obstacle avoidance, and trajectory forecast [Grigorescu et al., 2020]. Deep
Learning is also widely used in autonomous cars for object categorization (e.g., vehicles,
pedestrians, animals, or static structures). They can also detect clear space around the
car before switching lanes, etc. [Muhammad et al., 2020].

2.3 2-D Deep Learning Object Recognition Models for Autonomous Vehicles

Object detection and classification are the initial steps (after sensor steps) in the perception
phase of autonomous vehicles. The data collected from these steps should be merged for
data fusion. Next, the data fusion output becomes the input for the decision and planning
phase, before yielding output to the control system and invoking relevant actions [Behere
and Torngren, 2015]. Therefore, object recognition is the initial and critical step that
tremendously impacts subsequent actions in autonomous vehicle systems. This is also
the reason why object recognition is the main focus of this study.

Object detection involves the use of bounding boxes for producing object localizations
[Wang et al., 2022] and recognizing objects based on their salient attributes [Che et al.,
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2019]. Single-stage and double-stage detectors are the most often used structures for
2-D object detection in pictures. ”You Only Look Once” (YOLO) [Jiang et al., 2022],
the Single Shot multi-box Detector (SSD) [Kumar and Srivastava, 2020], CornerNet
[Law et al., 2019], and RefineNet [Zhou et al., 2022] are all renowned single-stage
detectors. RCNN, Faster-RCNN [Cheng et al., 2018], and R-FCN [Zhang and Chi, 2020]
are two-stage detectors that divide the object detection process into two parts: region of
interest for object candidates’ generation and bounding box classification. In general,
single-stage detectors do not perform as well as double-stage detectors, but they are
substantially quicker.

Figure 5 shows a comparison of the object recognition algorithms using the Pascal
VOC 2012 dataset and their measured mean Average Precision (mAP) with an Intersec-
tion over Union (IoU) value of 50 and 75, respectively. The first four techniques on the
right are single-stage detectors, whereas the rest are double-stage detectors. Due to their
greater complexity, two-stage detectors have a reduced runtime performance in frames
per second (FPS) [Grigorescu et al., 2020].

Figure 5: Comparison of object detection and recognition performance of different deep

learning models on Pascal VOC 2012 benchmarking dataset [Grigorescu et al., 2020].

It can be seen from Figure 5 that the ResNet model seems to perform the best with
the Pascal VOC 2012 benchmarking dataset, compared to other models. Meanwhile,
SqueezeNet, SSD, and Fast R-CNN are models that need to be optimized in terms of
mean Average Precision. Another comparative analysis has been conducted on the VOC
2012 dataset. The results have been tabulated in Table 1 and depicted in Figure 6.

From Table 1 and Figure 6, R-FCN (ResNet101) appears to be the best model when
compared to YOLOv1 and R-CNN(Alex). By experimenting on another dataset – COCO
with the latest deep learning models, the comparison results are shown in Figure 7. It
evidences that the DyHead model (Swin-L, multi-scale, self-training) is currently the best
in terms of Box Average Precision, compared to state-of-the-art models on the COCO
test-dev dataset [Code, 2022].
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Model mAP (mean Average Precision)

R-CNN(Alex) 53.3

R-CNN(VGG16) 62.4

Bayes 66.4

Fast R-CNN 68.4

SutffNet30 70.0

NOC 68.8

MR-CNN & S-CNN 73.9

HyperNet 71.4

OHEM + Fast R-CNN 80.1

ION 76.4

Faster R-CNN 70.4

YOLO 57.9

YOLO + Fast R-CNN 70.7

YOLOv2 78.2

SSD300 79.3

SSD512 82.2

R-FCN (ResNet101) 85.0

Table 1: Comparison of object detection performance of different deep learning models

on VOC 2012 Dataset [Zhao et al., 2019].

Figure 6: Comparison of object detection performance of different deep learning models

on VOC 2012 Dataset [Zhao et al., 2019].

3 Methodology

3.1 Macro Methodology

In this study, the chosen dataset for the deep learning experiments on object recognition
and classification of image data is Berkeley Deep Drive Dataset (BDD100K). This
research follows the data analytics lifecycle (see Figure 8) which is adopted from EMC
Education Services [Ultralytics, 2022].

The data analytics lifecycle comprises 6 phases. The initial stage is the Discovery
phase which involves the identification of the problem, context, hypothesis, and goals for
which the data will be used. The datasets are then processed and compacted into a single
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Figure 7: Comparison of object detection performance of different deep learning models

on COCO test-dev Dataset [Code, 2022].

spreadsheet in Phase 2 - Data Preparation. The dataset is explored and visualized in
Phases 3 and 4 - Model Planning and Building - utilizing 2 levels of data analytics: (i.e.,
descriptive and inferential statistical analysis). Finally, in Phases 5 and 6, key analytics
and prediction outcomes are communicated to inform relevant operations.

Figure 8: The Data Analytics Lifecycle.

Overall, BDD100K is a large-scale driving dataset with diverse types of annotations
provided by UC Berkeley, USA. This dataset can be used to recognize 2-D and 3-D
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objects, segment instances, mark lanes, and determine drivable regions. It is presently the
largest dataset for self-driving AI, with over 100,000 videos of over 1,100-hour driving
experiences at various times of the day and weather conditions. The BDD100K dataset
collects video data using cameras (in collaboration with Nexar). The footage is captured
with a Nexar dashcam at 720p and 30 frames per second. The collection includes videos
from several cities in the USA, including New York, Berkeley, San Francisco, and the
Bay Area.

Frame extraction is performed on 100,000 video clips to provide images with respec-
tive bounding box coordinates of the objects, considerably lowering the pre-processing
time for this dataset. The frame of each video clip is extracted from the 10th second of the
video, allowing viewers to distinguish items. All photographs have a resolution of 1280
x 720 pixels in RGB. A JSON file containing the properties of each video, including
the time of day, objects, scene, weather, and their respective bounding boxes, has been
given (Table 2).

Dataset BerkeleyDeepDrive BDD100k

Time and location 2018, NewYork, Berkeley, San Franciso, Bay Area (USA)

Traffic condition Different weather, lighting, and road conditions

Sensor configuration Monocular color camera, gyroscope, GPS, IMU, smartphone

sensors, magnetometer

Data type and size 100000 videos, 40s each (1.8 TB)

Video (mov)

Image (jpg)

Label (json)

Supplied resources Raw data for training, validation, and testing; annotations,

bounding box, lane marking, drivable area, pixel/instance-

level, segmentation

Usage scenarios Object detection, lane marking detection, drivable area detec-

tion, semantics egmentation

Table 2: Berkeley Deep Drive Dataset Details.

To reiterate, in the Discovery stage, the problem, context, and objectives for using
this dataset are defined. The main aims of the study are to propose different filtering
techniques for deep learning models in object detection and classification in 2-D image
data. Therefore, only images of the dataset are being used for this purpose. The dataset
consists of 100,000 images that are split into 3 subsets: 70,000 images in the training;
10,000 images in the validation; and 20,000 images in the testing.

Figure 9 shows that most photos have 9 to 21 different objects in each frame. However,
some images contain 91 objects in each frame. There are multiple pedestrians on the
sidewalk that the driverless car will need to identify in a picture with 91 bounding boxes.

Figure 10 depicts that the Berkeley dataset has seven distinct settings, including
residential, city, and highway environments. The Berkeley dataset contains photos and
videos from four separate locations in the United States: Berkeley, New York, The Bay
Area, and San Francisco. This provides a sufficient distinction between the photos and
ought to show enhanced object recognition results.
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Figure 9: The number of Bounding Boxes per Image in the BDD100K Dataset [Hisho,

2022].

Figure 10: The number of images in different scenes in the BDD100K Dataset [Hisho,

2022].

As can be seen from Figure 11, the number of items in this dataset makes it a preferred
option. Though the dataset is skewed (due to more ’vehicle’ items), there is still a wide
range of objects. The class imbalance may be ’corrected’ by duplicating the photographs
to match the number of ’car’ objects. However, all images in the training dataset contain
the label ’car.’ The animal category (which would need to be spotted by driverless cars
in the actual world) is missing in the dataset [Hisho, 2022].

In Phase 2 (Data Preparation), all the labels are in JSON format. They are converted to
COCO JSON format followed by the YOLO format. To ensure that each image matches
its label, a search of on-labeled data is conducted for removing images without labels. In
the end, there are a total of 80821 remaining images, with 69,863 images in the testing;
10,000 images in the validation; and 958 images in the testing subset.

In Phases 3 and 4, the analyzed and visualized results of different models are presented
in Section 5. Finally, in Phases 5 and 6, relevant findings and discussion are presented in
Sections 6 and 7.
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Figure 11: The number of images in different object categories in the BDD100K

Dataset [Hisho, 2022].

3.2 Micro Methodology

3.2.1 Deep Learning Models

This study has selected 5 different deep learning models, which are commonly used for
object detection, which are YOLOv5s, EfficientNet-B7, InceptionV4, Xception, and
MobilenetV3.

a) YOLOv5s

You Only Look Once (YOLO) is one of the most common model architectures
and object detection methods. It employs a neural network architecture to achieve high
accuracy and overall processing speed [Jiang et al., 2022]. A YOLOmodel’s first premise
is residual blocks. They utilize 77 remaining blocks in the initial building design to form
grids in the picture, as presented in Figure 12 [Wang and He, 2021].

Figure 12: YOLO Architecture [Jiang et al., 2022].

Each grid serves as a center point, and a specific forecast is created for each grid.
In the second grid, the bounding boxes are created by considering the center point for
a particular forecast. While classification tasks perform well for each grid, separating
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the bounding boxes for each prediction is more challenging. The third and last grid is
to utilize the intersection of union (IOU) to obtain the optimal bounding boxes for a
specific object identification task [Alves-Oliveira et al., 2020].

Figure 13 presents the performance of different versions of YOLOv5 and EfficientDet
in terms of Average Precision in the validation set and GPU Speed on the COCO Dataset.
Results reveal that YOLO models have faster GPU speed for object detection, compared
to different EfficientDet models. YOLOv5s is the fastest model amongst the 4 versions
of YOLO but with the lowest average precision. In contrast, the YOLOv5x is the slowest
model but with the highest average precision among the 4 versions [Ultralytics, 2022].

Figure 13: Performance of different versions of YOLO on the COCO Dataset

[Ultralytics, 2022].

b) EfficientNet-B7

EfficientNet is an architecture and scaling approach to a convolutional neural net-
work [Hien et al., 2021b] that uses a compound coefficient to consistently scale all
depth/width/resolution dimensions (Figure 14). This scaling approach evenly scales
network depth, width, and resolution using a predetermined set of scaling coefficients
[Hoang and Jo, 2021].

Figure 14: The architecture of EfficientNet [Hoang and Jo, 2021].

As can be seen from Figure 15, EfficientNet models outperform earlier CNNs in
terms of accuracy and efficiency [Baheti et al., 2020].

c) Xception
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Figure 15: Performance of different versions of EfficientNet [Baheti et al., 2020].

Figure 16: The architecture of Xception [Chollet, 2017].

Xception is a variation of the deep CNN architecture with Depthwise Separable
Convolutions. Inception modules in CNN are introduced by Google as an intermediary
step between normal convolution and the depthwise separable convolution process. In this
context, a depthwise separable convolution may be viewed as an Inception module with
an infinite number of towers. However, in a new deep CNN architecture (motivated by
Inception), the Inception modules are substituted with depthwise separable convolutions
[Chollet, 2017].

As presented in Figure 16, data is routed repeatedly 8 times through the entry flow and
the middle flow, and ultimately, through the exit flow. In most conventional classification
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problems, the Xception algorithm outperforms VGG-16, ResNet, and Inception V3.

d) MobilenetV3

MobileNetV3 is a tuned CNN for mobile phone CPUs by using a mix of hardware-
aware NAS (network architecture search) augmented by the NetAdapt algorithm. The
network is a new efficient version of nonlinearities suitable for the mobile environment.
It complements search approaches with an innovative powerful network design. The
network architecture is depicted in Figure 17, which includes the use of hard swish
activation and squeeze-and-excitation modules in the MBConv blocks [Kavyashree and
El-Sharkawy, 2021].

Figure 17: MobilenetV3 Architecture [Kavyashree and El-Sharkawy, 2021].

a) InceptionV4

Inception is an architectural design of a deep neural network that comprises replicated
components known as Inception modules. CNN employs these Inception Modules to
provide more efficient computation and deeper networks by reducing dimensionality
using stacked 1×1 convolutions. The modules are created to address challenges such as
computational cost and overfitting. Figure 18 depicts the architecture of Inception-v4
[Szegedy et al., 2017].

3.2.2 Filtering Techniques

a) Hessian Filter

A hybrid Hessian filtering technique can be used to filter 2-D and 3-D images. In
2-D images, the Hessian matrix can be defined as

H =

[
Hxx Hxy

Hxy Hyy

]
which is obtained by convolving the image with the Gaussian kernel’s second deriva-

tives in the x- and y-directions respectively. This filter is suitable for detecting continuous
edges, such as wrinkles, vessels, and rivers. It may be utilized to compute a fraction of
the entire image that contains such objects. The technique of Hessian is nearly identical
to the Frangi filter, but it uses an alternative smoothing method.
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Figure 18: The overall schema of InceptionV4 [Szegedy et al., 2017].

Figure 19: Application of Hybrid Hessian filter for winkle detection.

Figure 19 presents an application of how a Hybrid Hessian Filter detects the edges
of human wrinkles. [Ng et al., 2014]

In image processing and computer vision, the Hessian matrix is often used to describe
image processing operators. In normal mode analysis, the Hessian matrix can compute
the various molecular frequencies in infrared spectroscopy.

In Figure 20, a driving scene image (on the left) has been applied with a Hessian
filter (on the right).

b) Laplacian Filter

In the edge area of an image, the pixel intensity shows a ”jump” or a high variation
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Figure 20: Application of Hessian filter to a driving image.

of intensity. Using Sobel Operator to get the first derivative of the intensity, an edge is
characterized by a maximum, as illustrated in Figure 21 [OpenCV, 2022].

Figure 21: The first derivative of the intensity [OpenCV, 2022].

And while obtaining the second derivate, the value becomes zero, as shown in Figure
22.

Figure 22: The second derivative of the intensity [OpenCV, 2022].

Therefore, this criterion can be used to detect edges in an image. Since images are
2-D, it is necessary to obtain the derivative in both dimensions.

The Laplacian operator is defined by:

Laplace(f) =
∂2f

∂x2
+

∂2f

∂y2

The Laplacian operator is implemented in OpenCV using the function Laplacian.
Since the Laplacian utilizes the images’ gradient, it employs the Sobel operator internally
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for its calculation.
To apply a Laplacian filter to an image, first, noise needs to be removed from the

image by applying a Gaussian blur followed by converting the original image to a
grayscale. A Laplacian operator can be applied to the grayscale image and store the
output image, as illustrated in Figure 23.

Figure 23: Application of Laplacian filter to a driving image in this research.

c) Hessian-based Ridge Detection Filter

Ridges are eigenvalues of the matrix of second-order derivate of an image, also
known as the Hessian matrix. Therefore, it is possible to create a ridge detector function
using scikit-image to extract local minima ridges. First, noise needs to be removed from
the image by applying a Gaussian blur followed by converting the original image to a
grayscale. Then the grayscale image can be put into a ridge detector function to output
the local minima ridges and save them as a new image presented in Figure 24.

Figure 24: Application of Ridge Detection filter to a driving image in this research.

d) Proposed Filtering Techniques

In this research, a summary of the proposed filtering techniques for object detection
in images (shown in Figure 25) is implemented as follows:

1. One of the 3 proposed filters, including Hessian, Laplacian, and Ridge Detection
filters is applied to an input image;

2. The output of (1) is converted to grayscale, retaining only the edges of the image.

3. The grayscale image is then overlayed with the original input image with varying
overlaying levels of 5% to 20%. This task includes alpha blending and masking with
NumPy.
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Figure 25: Proposed filtering techniques for object recognition in image data for

autonomous vehicles.

4. The final image is fed into the deep learning model for object detection.

The critical reason behind this approach is that the final image will have highly
sharpened edges.

3.2.3 Monitoring Energy Consumption

Type Specification

Model HP Pavilion 15

Operating System Windows 10.0, 64 bits

Processor Intel® CoreTM i7-8550U CPU @1.80GHz 1.99GHz

RAM 12.0GB

HDD Storage 1TB

Table 3: Specifications of the Computer used for Experiments.

Joulemeter power measuring software has been chosen for this study due to its simple
and user-friendly interface. It can track and monitor the power consumption of individual
apps. The PC specifications for all the experiments have been tabulated in Table 3.

Joulemeter does not allow automated calibration in Windows 10. As a result, manual
calibrations are carried out using the setups shown in Figure 26. Furthermore, for the
calibration, the battery must be at least 50% charged without a background program or
process [Kothari and Bhattacharya, 2009].

3.2.4 Green House Gas Footprint Audit

Conversion factors are commonly used by the United Kingdom and international organi-
zations to report greenhouse gas (GHG) emissions [Business et al., 2021]. The types of
emissions are as follows:
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Figure 26: Joulemeter Manual Calibration.

– Scope 1 (direct emissions): Emissions from operations that the organizationmaintains
or generates.

– Scope 2 (energy indirect): Emissions from using electricity, heat, steam, and cooling
of the environment

– Scope 3 (other indirect): Emissions created by activities not defined as Scope 2.

The conversions for Levels 2 and 3 emissions are used for this research. This study
focuses on the UK electricity, transmission, and distribution (T&D) variables, which are
shown in Table 4.

Scope Activity Type Unit kg CO2e kg CO2 kg CH4 kg N2O

2 Electricity

generated

Electric-

ity: UK

kWh 0.21233 0.21016 0.0008 0.00137

3 T&D-UK

electricity

Electric-

ity: UK

kWh 0.01879 0.01860 0.00007 0.00012

3 Distribution-

district

heat &

steam

5% loss kWh 0.00899 0.00890 0.00006 0.00003

Table 4: GHG Conversion Factors from the UK Government Data.
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4 Preliminary Research

In this preliminary research, 5 different deep learning models (YOLOv5s, EfficientNet-
B7, Xception, MobilenetV3, and InceptionV4) have been built for object detection in
autonomous vehicles with the BDD100K dataset. The results are depicted in Table 5
and Figures 27 to 29.

Model Training time per

epoch (s)

Inference time per

epoch (s)

Log loss

Xception 3548.529 0.061 0.431

InceptionV4 3704.766 0.074 0.468

MobileNetV3 761.87 0.050 0.538

EfficientNet-B7 6224.268 0.112 0.425

YOLOv5s 2299.266 0.044 0.403

Table 5: Performance of Deep Learning models for object detection.

Figure 27: Log losses of the models.

Table 5 and Figure 27 evidence that YOLOv5s and EfficientNet-B7 models perform
the best with the lowest log losses. This result informs a decision for the implementation
of the 2 models in the next section.

Regarding the training and inference times, MobileNetV3 has the lowest performance.
And in contrast, despite generating one of the best accuracies, EfficientNet-B7 takes the
longest time for training and inference. Therefore, EfficientNet-B7 should be taken into
consideration for optimization in Section 5. Meanwhile, YOLOv5s has become the best
model in terms of accuracy, training, and inference time. This is a promising result and
could act as a reference in model decision-making for researchers and manufacturers.
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Figure 28: Training time per epoch.

Figure 29: Inference time per epoch.

5 Findings and Discussion

5.1 Comparison of Filtering Techniques applying to the YOLOv5s model

Table 6 and Figure 30 have indicated that by using different filtering techniques, the
mean Average Precision (mAP) of YOLOv5s models increased remarkably. Particularly,
the Ridge Detection filter with 10% overlay, yields the highest mAP boost of 6.69%,
from 56.67% to 63.36% (an 11.81% increase of the original mAP). This is followed by
the Laplacian filter with a 5% overlay and the Hessian filter with a 10% overlay.

Figure 31 plots the mAP values for the Ridge Detection filter with a 10% overlay
applied on 1000 test images. The graph shows that the mAP of YOLOv5s with a Ridge
Detection filter is higher than the one without Ridge Detection Filter for most of the
tested images.

T-test:
A series of 2-tailed t-tests are implemented to evaluate if there is a significant differ-

ence between the mean Average Precision (mAP) of object detection using YOLOv5s
with and without different filters.

– Null Hypothesis (H0): mAP of model A = mAP of model B
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Filter Mean

Average

Precision

(%)

Pre-

process

Time

(ms)

Inference

Time

(ms)

Non-

maximum

Suppres-

sion Time

(ms)

Total

Time per

Image

(ms)

No Filter 56.67 36.83 326.70 3.15 363.53

Hessian 20% 57.10 102.78 215.38 3.98 318.16

Hessian 10% 60.58 38.25 168.05 1.75 206.30

Hessian 5% 59.65 48.30 298.70 3.53 347.00

Laplacian 20% 57.56 37.20 167.63 1.78 204.83

Laplacian 10% 59.51 73.25 161.65 1.95 234.90

Laplacian 5% 62.43 112.45 158.78 1.53 271.23

Ridge Detection 20% 60.32 37.90 163.80 1.55 201.70

Ridge Detection 10% 63.36 39.23 167.85 2.85 207.08

Ridge Detection 5% 59.74 39.65 164.00 1.75 203.65

Table 6: Comparison of Filtering Techniques applying to the YOLOv5s model.

Figure 30: Mean Average Precision of Object Detection in YOLOv5s with different

filtering techniques.

– Alternative Hypothesis (Ha): mAP of model A 6= mAP of model B

– Chosen Confidence Level: 99%, which means the significance level α = 0.01.

A series of paired 2-tail t-tests are conducted for the filtering techniques listed in
Table 6 and the results are plotted into a heatmap in Figure 32. The value 1 indicates that
there is a significant difference in the mAP (i.e., reject the Null Hypothesis) and 0 means
there is no significant difference (i.e., accept the null hypothesis).

Figure 31 shows that mAP of most of the filtering techniques is significantly different
from each other. Most importantly, the mAP values of the YOLOv5s model with all
filtering techniques are significantly different from those that are without any filter.

Figures 31 and 32 evidence that the mAP of object detection for deep learning models
with filtering techniques is better compared to the models without them. Remarkably, the
total object detection time could be reduced up to 43.98% by using the Ridge Detection
filter with a 5% overlay.
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Figure 31: Means of Average Precision of YOLOv5s model with and without Ridge

Detection Filter (10% overlay).

Figure 32: T-Test on mean Average Precision for the different filtering techniques on

the YOLOv5s model.

Overall, object detection in the YOLOv5smodels with 3 proposed filters (i.e., Hessian,
Laplacian, and Hessian-based Ridge Detection) outperforms those without any filter. In
this experiment, the Ridge Detection Filter appears to be the best-performing filter.

5.2 Comparison of Filtering Techniques applied to the EfficientNet-B7 model

Using the samemethodology of Section 5.1, the results when comparing different filtering
techniques applied to the EfficientNet-B7 model are presented below.
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Figure 33: The pre-process, inference, and non-maximum suppression times of object

detection in YOLOv5s with different filtering techniques.

Figure 34: The total object detection time in YOLOv5s with different filtering

techniques.

Table 7 and Figure 35 prove that with different filtering techniques, the mAP of
EfficientNet-B7 models has increased considerably. Especially, the Laplacian filter with
a 5% overlay has the highest mAP increase of 1.05%, from 42.46% to 44.76% (an
increase of 5.42% from the original mAP), followed by the Ridge Detection filter with a
10% overlay and the Hessian filter with a 5% overlay.

Figure 36 also shows the mAP of EfficientNet-B7 with Laplacian filter with a 5%
overlay is higher than without the filter for most of the 1000 tested images.

Figure 37 indicates that the mAP of the EfficientNet-B7 models with all filtering
techniques is significantly better than the ones without filters (except for the Laplacian
filter with 20% overlay).

Figure 38 also proves that the mean processing time for object detection by deep
learning models with proposed filtering techniques is better compared to the ones without
them. Notably, the total detection time could be reduced by up to 21.02% by using the
Ridge Detection filter with a 5% overlay, shown in Figure 39.

In general, object detection in the EfficientNet-B7 models with 3 proposed filters
(i.e., Hessian, Laplacian, and Hessian-based Ridge Detection) outperforms those without



Hien N.L.H., Kor A.-L., AngM.Ch., Rondeau E., Georges J.-Ph.: Image Filtering ... 79

Filter Mean

Average

Precision

(%)

Pre-

process

Time (ms)

Inference

Time (ms)

Total Time

per Image

(ms)

No Filter 42.46 50.27 1417.64 1467.91

Hessian 20% 43.68 50.21 1140.07 1190.28

Hessian 10% 44.54 52.16 1129.73 1181.89

Hessian 5% 44.55 50.09 1178.97 1229.06

Laplacian 20% 42.98 48.40 1132.60 1181.00

Laplacian 10% 44.05 50.99 1263.43 1314.42

Laplacian 5% 44.76 56.88 1451.26 1508.14

Ridge 20% 44.32 53.61 1541.04 1594.65

Ridge 10% 44.72 49.22 1325.21 1374.43

Ridge 5% 44.54 47.17 1119.69 1166.86

Table 7: Comparison of Filtering Techniques for the EfficientNet-B7 model.

Figure 35: Mean Average Precision of object detection in EfficientNet-B7 with different

filtering techniques.

any filter. And in this experiment, the Laplacian Filter becomes the best-performing
filter among the rest.

5.3 Green House Gas Footprint Audit

a) Comparison of Energy Consumption of 5 Deep Learning Models

Aggregated energy consumption of many deep learningmodels with different filtering
techniques is measured 10 times followed by an average, as depicted in Table 8. The
total hardware energy is the sum of the energy consumed by the CPU, Disk, Monitor,
and Base. The aggregated total energy consumption is the sum of total hardware energy
and aggregated application energy. Lastly, the aggregated Average Energy Consumption
per second (J/s) is calculated by dividing Aggregated Total Energy Consumption (KJ)
by Aggregated Total Time (s) and then multiplying by 1000.

Among the 5 deep learningmodels,MobileNet appears to be the greenest model, while
EfficienNet-B7would be the least green. The Aggregated Total Energy Consumption (KJ)
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Figure 36: Compare the means of Average Precision of the EfficientNet-B7 model

without and with Laplacian Filter with 5% overlay.

Figure 37: T-Test on Average Precision among different filtering techniques on the

EfficientNet-B7 model.

of the 5 deep learning models is tabulated in Table 8. Subsequently, they are converted
to GHG footprint (see Figure 40) using the greenhouse gas conversion factors in Table 4.

b) Comparison of YOLOv5s Models with and without filters

Similar to previous section a, energy consumption and emissions data are presented
in Table 9 and Figure 41. From Table 9, it is clear that the energy consumption and
emission of object recognition for YOLOv5s with proposed filtering techniques is less
compared to the models without them. Moreover, using a Hessian filter with a 20%
overlay and a Ridge Detection filter with a 5% overlay can significantly reduce energy
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Figure 38: The pre-process, and inference time for object detection in EfficientNet-B7

with different filtering techniques.

Figure 39: Total detection time for object detection in EfficientNet-B7 with different

filtering techniques.

consumption and total emission, by 50.69% and 50.22% respectively.
c) Comparison between the EfficientNet-B7 Model with and without using filters

Similar to section a and b, Table 10 and Figure 42 indicates that the energy con-
sumption and emission of object recognition for EfficientNet-B7 with proposed filtering
techniques are better compared to the models without them. Especially, using a Hessian
filter with 5% can significantly reduce energy consumption and total emission of the
EfficientNet-B7 model by 33.38%.

6 Conclusion

The preliminary research of this study aims to build 5 different Deep Learning mod-
els, YOLOv5s, EfficientNet-B7, Xception, MobilenetV3, and InceptionV4, which are
commonly used for 2-D object recognition. The findings reveal that YOLOv5s and
EfficientNet-B7 models perform the best among the 5, with the lowest log losses. While
MobileNetV3 has the lowest performance, it delivers relatively satisfactory training and
inference time, as well as the lowest energy consumption. On the other hand, despite hold-
ing one of the best performances, EfficientNet-B7 consumes the longest time for training
and inference; and incurs the highest energy consumption. Meanwhile, YOLOv5s has be-
come the best model in terms of performance and sustainability. This result could act as a
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Model Aggregated Average Hardware

Energy Consumption (KJ)

Aggregated

Applica-

tion Energy

(KJ)

Aggregated

Total Time

(s)

Aggre-

gated Total

Energy

Consump-

tion (KJ)

CPU

(KJ)

Mon-

itor

(KJ)

Disk

(KJ)

Base

(KJ)

Total

Hard-

ware

Energy

(KJ)

Xception 4.517 0.909 0.007 4.545 9.978 0.223 354859 10.201

InceptionV4 4.630 0.912 0.005 4.560 10.107 0.143 370484 10.249

Mo-

bilenetV3

0.823 0.216 0.001 1.080 2.119 0.076 76192 2.195

EfficientNet-

B7

8.444 1.515 0.007 7.575 17.542 0.322 622438 17.863

YOLOv5s 2.184 0.609 0.003 3.045 5.840 0.137 229931 5.978

Table 8: Comparative Analysis of Energy Consumption of 5 Deep Learning Models for

Object Recognition.

Figure 40: GHG Emissions for 5 different deep learning models.

good benchmarking, leading to a decision for optimizing YOLOv5s and EfficientNet-B7
models in this study.

This research primarily proposes 3 filtering techniques, Hessian, Laplacian, and
Hessian-based Ridge Detection filters, for 2 deep learning models (YOLOv5s and
EfficientNet-B7) in 2-D object recognition, optimizing their performance and sustainabil-
ity. Applying to the BDD100K image dataset, those filtering techniques boosted the mean
Average Precision (mAP) of the YOLOv5s and EfficientNet-B7 models remarkably.

– In the YOLOv5s model, the Ridge Detection filter with a 10% overlay brings an
increase of the mAP to 11.81%, from 56.67% to 63.36%. Slightly lower than that,
the Laplacian filter with a 5% overlay and the Hessian filter with a 10% overlay also
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Model Aggregated Average Hardware

Energy Consumption (KJ)

Aggregated

Applica-

tion Energy

(KJ)

Aggregated

Total Time

(s)

Aggre-

gated Total

Energy

Consump-

tion (KJ)

CPU

(KJ)

Mon-

itor

(KJ)

Disk

(KJ)

Base

(KJ)

Total

Hard-

ware

Energy

(KJ)

No Filter 2.184 0.609 0.003 3.045 5.840 0.137 229.931 5.978

Hessian 5% 1.374 0.273 0.003 1.365 3.014 0.026 95.956 3.040

Hessian 10% 1.358 0.282 0.000 1.410 3.050 0.024 98.162 3.075

Hessian 20% 1.283 0.273 0.000 1.365 2.921 0.026 94.228 2.948

Laplacian

5%

1.328 0.297 0.000 1.485 3.110 0.025 101.022 3.135

Laplacian

10%

1.283 0.330 0.001 1.650 3.264 0.026 96.842 3.289

Laplacian

20%

1.347 0.288 0.000 1.440 3.075 0.022 97.439 3.098

Ridge 5% 1.317 0.273 0.000 1.365 2.955 0.022 94.668 2.976

Ridge 10% 1.357 0.285 0.000 1.425 3.067 0.025 97.321 3.091

Ridge 20% 1.390 0.288 0.001 1.440 3.119 0.037 99.877 3.156

Table 9: Comparison of Energy Consumption for YOLOv5s Models with and without

using filters.

reached satisfactory results. A series of 2-tail t-tests are also implemented and has
confirmed that all filtering techniques have significantly different mAP compared to
the model without filters. Additionally, the mAP of most of the filtering techniques
is also significantly different from each other. The mean detection time of object
recognition with proposed filtering techniques is better compared to the models
without them. Remarkably, the total object detection time could be reduced up to
43.98% by using the Ridge Detection filter with a 5% overlay. Using a Hessian
filter with a 20% overlay and a Ridge Detection filter with a 5% overlay can also
significantly reduce energy consumption and emission, by 50.69% and 50.22%
respectively. Therefore, the 3 proposed filters have enhanced the YOLOv5s model
resulting in better performance and sustainability in object recognition compared to
ones without filters.

– In the EfficientNet-B7 model, the Laplacian filter with a 5% overlay increased the
mAP to 5.42%, from 42.46% to 44.76%. Moreover, the Ridge Detection filter with
a 10% overlay and Hessian filter with a 5% overlay also delivered promising results.
A set of 2-tail t-tests has indicated that all filtering techniques have a significantly
different mAP compared to the model without filters, except for the Laplacian filter
with a 20% overlay. Furthermore, the proposed filters can also help reduce the mean
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Figure 41: Emission Data of YOLOv5s with and without using different filters.

Figure 42: Emissions Data of EfficienNet-B7 with and without using filters.

detection time. Particularly, the total detection time could be reduced up to 21.02%
by using the Ridge Detection filter with a 5% overlay. And using the Hessian filter
with 5% can significantly reduce energy consumption and emission by 33.38%.
Again, the 3 proposed filters have enabled the EfficientNet-B7 model to outperform
its performance and sustainability when not using filters for object recognition.

Despite substantial efforts that have been conducted in the past [He et al., 2022, Wang
et al., 2021, Cai and Vasconcelos, 1483], this study has proposed high-efficiency filtering
techniques for object recognition and classification for autonomous vehicles. These
results may lead to more future studies relating to filtering algorithms for object detection
and classification in autonomous cars.

7 Recommendations and Future Work

One of the notable findings from the Literature Review section is that autonomous
vehicles are currently yet to be an environmental-friendly solution in transportation,
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Model Aggregated Average Hardware

Energy Consumption (KJ)

Aggregated

Applica-

tion Energy

(KJ)

Aggregated

Total Time

(s)

Aggre-

gated Total

Energy

Consump-

tion (KJ)

CPU

(KJ)

Mon-

itor

(KJ)

Disk

(KJ)

Base

(KJ)

Total

Hard-

ware

Energy

(KJ)

No Filter 8.444 1.515 0.007 7.575 17.542 0.322 622.438 17.863

Hessian 5% 5.657 1.026 0.000 5.130 11.813 0.087 396.411 11.900

Hessian 10% 5.837 1.038 0.001 5.190 12.066 0.089 394.872 12.155

Hessian 20% 5.799 1.050 0.000 5.250 12.099 0.079 395.932 12.178

Laplacian

5%

5.712 1.059 0.000 5.295 12.066 0.072 393.187 12.137

Laplacian

10%

5.852 1.053 0.000 5.265 12.170 0.071 386.141 12.241

Laplacian

20%

6.892 1.200 0.001 6.000 14.093 0.084 454.514 14.177

Ridge 5% 8.293 1.413 0.008 7.065 16.778 0.134 563.343 16.912

Ridge 10% 8.087 1.398 0.001 6.990 16.475 0.124 560.665 16.599

Ridge 20% 7.990 1.383 0.000 6.915 16.288 0.127 556.514 16.415

Table 10: Comparative Energy Consumption of EfficientNet-B7 Model with and without

using filters.

however, they will become an indispensable and greener solution in the long-term vision.
Scientists and manufacturers are recommended to use green power for manufacturing
and operating autonomous vehicles, optimize the vehicle lifetime, schedule battery re-
placements, and conduct the transition from private vehicle use to shared and community
use. Improving the sustainability level of autonomous vehicles necessitates collaboration
on minimizing vehicle production supply chain impacts and encouraging clean power
sources in electrical infrastructure decision-making.

Based on the findings of the Preliminary Research, the YOLOv5s and EfficientNet-
B7 models are recommended for object detection and classification in autonomous
vehicles instead of the Xception, MobilenetV3, and InceptionV4 models. Particularly,
the YOLOv5s model is highly recommended for mobile applications since it holds a
good balance of precision, detection time, and sustainability.

In the main research section, the proposed Hessian, Laplacian, and Hessian-based
Ridge Detection filters have significantly improved the performance and sustainability of
YOLOv5s and EfficientNet-B7 models. Therefore, these image-filtering techniques can
be applied in further research to reduce motion blurs and mitigate some of the limitations
of image data in autonomous vehicles. Furthermore, while constructing massive deep
learning systems, developers should employ energy-tracking tools to reduce the ICT
sector’s carbon impact. This approach also provides a better consumer experience in
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terms of how long the batteries in technical products last. This is since the impact of
deep learning would be considerably bigger than that demonstrated in this study when a
program of a few thousand lines of code is produced.

Future research may gear towards evaluating more deep learning models, and not
only in object detection and classification models in autonomous vehicles. Further
development of different filtering techniques should be implemented such as optimizing
the filters, using different overlaying techniques, or proposing more filtering approaches.
Future work also tends to propose different filtering techniques in 3D object detection in
LiDAR point cloud data. To enhance the analytical report, a full evaluation of how deep
learning affects power use and emissions in a program should be undertaken using more
parameters, such as memory utilization. More profiling tools as well as footprint audit
tools can be used in later studies to extract more accurate auditing data.
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