606 research outputs found

    On the complexity of task allocation

    Get PDF

    Modality, Potentiality and Contradiction in Quantum Mechanics

    Get PDF
    In [11], Newton da Costa together with the author of this paper argued in favor of the possibility to consider quantum superpositions in terms of a paraconsistent approach. We claimed that, even though most interpretations of quantum mechanics (QM) attempt to escape contradictions, there are many hints that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause [1, 2, 3] have raised several arguments against this approach and claimed that, taking into account the square of opposition, quantum superpositions are better understood in terms of contrariety propositions rather than contradictory propositions. In [17] we defended the Paraconsistent Approach to Quantum Superpositions (PAQS) and provided arguments in favor of its development. In the present paper we attempt to analyze the meanings of modality, potentiality and contradiction in QM, and provide further arguments of why the PAQS is better suited, than the Contrariety Approach to Quantum Superpositions (CAQS) proposed by Arenhart and Krause, to face the interpretational questions that quantum technology is forcing us to consider.Comment: Published in: New Directions in Paraconsistent Logic, J-Y B\'eziau M. Chakraborty & S. Dutta (Eds.), Springer, in press. arXiv admin note: text overlap with arXiv:1404.518

    Non-local signatures of the chiral magnetic effect in Dirac semimetal Bi0.97_{0.97}Sb0.03_{0.03}

    Get PDF
    The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) makes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an EB\textbf{E}\cdot\textbf{B}-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi0.97_{0.97}Sb0.03_{0.03}. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi0.97_{0.97}Sb0.03_{0.03}.Comment: 6 pages, 6 figures + 7 pages of supplemental materia

    4π4\pi periodic Andreev bound states in a Dirac semimetal

    Get PDF
    Electrons in a Dirac semimetals possess linear dispersion in all three spatial dimensions, and form part of a developing platform of novel quantum materials. Bi1x_{1-x}Sbx_x supports a three-dimensional Dirac cone at the Sb-induced band inversion point. Nanoscale phase-sensitive junction technology is used to induce superconductivity in this Dirac semimetal. Radio frequency irradiation experiments reveal a significant contribution of 4π\pi-periodic Andreev bound states to the supercurrent in Nb-Bi0.97_{0.97}Sb0.03_{0.03}-Nb Josephson junctions. The conditions for a substantial 4π4\pi contribution to the supercurrent are favourable because of the Dirac cone's topological protection against backscattering, providing very broad transmission resonances. The large g-factor of the Zeeman effect from a magnetic field applied in the plane of the junction, allows tuning of the Josephson junctions from 0 to π\pi regimes.Comment: Supplementary information is include

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic

    Statistical properties of multistep enzyme-mediated reactions

    Full text link
    Enzyme-mediated reactions may proceed through multiple intermediate conformational states before creating a final product molecule, and one often wishes to identify such intermediate structures from observations of the product creation. In this paper, we address this problem by solving the chemical master equations for various enzymatic reactions. We devise a perturbation theory analogous to that used in quantum mechanics that allows us to determine the first () and the second (variance) cumulants of the distribution of created product molecules as a function of the substrate concentration and the kinetic rates of the intermediate processes. The mean product flux V=d/dt (or "dose-response" curve) and the Fano factor F=variance/ are both realistically measurable quantities, and while the mean flux can often appear the same for different reaction types, the Fano factor can be quite different. This suggests both qualitative and quantitative ways to discriminate between different reaction schemes, and we explore this possibility in the context of four sample multistep enzymatic reactions. We argue that measuring both the mean flux and the Fano factor can not only discriminate between reaction types, but can also provide some detailed information about the internal, unobserved kinetic rates, and this can be done without measuring single-molecule transition events.Comment: 8 pages, 3 figure

    Heat flow and near-seafloor magnetic anomalies highlight hydrothermal circulation at Brothers volcano caldera, southern Kermadec arc, New Zealand

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(14), (2019): 8252-8260, doi: 10.1029/2019GL083517.Brothers volcano is the most hydrothermally active volcano along the Kermadec arc, with distinct hydrothermal fields located on the caldera walls and on the postcollapse volcanic cones. These sites display very different styles of hydrothermal activity in terms of temperature, gas content, fluid chemistry, and associated mineralization. Here we show the results of a systematic heat flow survey integrated with near‐seafloor magnetic data acquired using remotely operated vehicles and autonomous underwater vehicles. Large‐scale circulation is structurally controlled, with a deep (~1‐ to 2‐km depth) central recharge through the caldera floor and lateral discharge along the caldera walls and at the summits of the postcollapse cones. Shallow (~ 0.1‐0.2 km depth) circulation is characterized by small‐scale recharge zones located at a distance of ~ 0.1–0.2 km from the active vent sites.We thank the Captains and crews of the R/V Sonne, Thompson, and Tangaroa and the engineers from Wood Hole Oceanographic Institution and MARUM for the successful operation of ABE, Sentry, Quest 4000, and Jason. The heat flow data surveys were funded by NSF grant OCE‐1558356 (PI Susan Humphris) and a grant from the German Ministry for Education and Research BMBF, project no. 03G0253A (PI Andrea Koschinsky). Funding from the New Zealand Government (Ministry of Business, Innovation and Employment) helped enable this study. This paper was significantly improved by the comments from the Editor Rebecca Carey and from two unknown reviewers. The data used in this paper can be downloaded from the U.S. Lamont‐Doherty MGDS database.2020-01-1

    10 wegen om te groeien : oplossingen voor schaalvergroting binnen de melkveehouderij in de Achterhoek en Liemers

    Get PDF
    In deze brochure laten melkveehouders en experts hun licht schijnen over de mogelijke uitbreiding binnen de melkveehouderij in het reconstructiegebied Achterhoek en Liemers. Zij geven aanbevelingen en tips en wijzen de weg naar een toekomst voor de melkveehouderij. Van betere rentabiliteit, het zoeken van samenwerking, mogelijkheden van kavelruil, natuurbeheer en landschapsonderhoud tot "kijk eens per jaar waar je staat en wat je wilt". Een project in samenwerking met LNV, LTO, WUR en het Plattelandshui

    Revisiting the Applicability of Metaphysical Identity in Quantum Mechanics

    Get PDF
    We discuss the hypothesis that the debate about the interpretation of the orthodox formalism of quantum mechanics might have been misguided right from the start by a biased metaphysical interpretation of the formalism and its inner mathematical relations. In particular, we focus on the orthodox interpretation of the congruence relation, '=', which relates equivalent classes of different mathematical representations of a vector in Hilbert space, in terms of metaphysical identity. We will argue that this seemingly "common sense" interpretation, at the semantic level, has severe difficulties when considering the syntactic level of the theory
    corecore