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Many world interpretations �MWIs� of quantum mechanics avoid the measurement
problem by considering every term in the quantum superposition as actual. A seem-
ingly opposed solution is proposed by modal interpretations �MIs� which state that
quantum mechanics does not provide an account of what “actually is the case,” but
rather deals with what “might be the case,” i.e., with possibilities. In this paper we
provide an algebraic framework which allows us to analyze in depth the modal
aspects of MWI. Within our general formal scheme we also provide a formal
comparison between MWI and MI, in particular, we provide a formal understand-
ing of why—even though both interpretations share the same formal structure—MI
fall pray of Kochen–Specker-type contradictions while MWI escape them. © 2009
American Institute of Physics. �DOI: 10.1063/1.3177454�

I. INTRODUCTION: MANY WORLDS AND MODALITY

Today, almost 50 years after its birth in 1957, the many world interpretation �MWI� of
quantum mechanics still is one important line of investigation within the many interpretations of
quantum theory. MWI is considered to be a direct conclusion from Everett’s11 first proposal in
terms of “relative states.” Everett’s idea was to let quantum mechanics find its own interpretation,
making justice to the symmetries inherent in the Hilbert space formalism in a simple and con-
vincing way.7 In this paper we will not address the main argumentative lines of discussion raised
for and against MWI �see, for example, Refs. 4, 6, and 20�. Rather, we shall concentrate in its
relation to the formal structure of quantum mechanics and provide an algebraic frame which will
allow us to discuss the notion of logical possibility within it.

The main idea behind MWI is that superpositions refer to collections of worlds, in each of
which exactly one value of an observable, which corresponds to one of the terms in the superpo-
sition, is realized. Apart from being simple, the claim is that it possesses a natural fit to the
formalism, respecting its symmetries. This provides a solution to the measurement problem by
assuming that each one of the terms in the superposition is actual in its own correspondent world.
Thus, it is not only the single value which we see in “our world” which gets actualized but rather,
that a branching of worlds takes place in every measurement, giving rise to a multiplicity of
worlds with their corresponding actual values. The possible splits of the worlds are determined by
the laws of quantum mechanics.

Another proposed solution to the so-called measurement problem has been developed in the
frame of modal interpretations �MIs�.5,18,21 According to these interpretations “the quantum for-
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malism does not tell us what actually is the case in the physical world, but rather provides us with
a list of possibilities and their probabilities. The modal viewpoint is therefore that quantum theory
is about what may be the case, in philosophical jargon, quantum theory is about modalities.”4

Instead of actualizing every term in the superposition, MI claims that each term remains possible,
evolving with the Schrödinger equation of motion.

Although MWI and MI share the same formal orthodox scheme, there are but few compari-
sons in the literature.4,12 In this paper we develop an algebraic framework which allows us to
analyze and discuss the modal aspects of MWI. Within this new formal account, we can also
provide a rigorous comparison between MWI and MI. In particular, we can give a formal under-
standing of why MI fall pray of Kochen–Specker �KS�-type contradictions1,17 while MWI escapes
them.

In Sec. II, we introduce basic notions about lattice theory that will be necessary later. In Sec.
III, we provide a general discussion on contextuality and modality in quantum mechanics. In Sec.
IV, we develop a new algebraic frame for MWI. In Sec. V, we formally compare MWI to MI.

II. BASIC NOTIONS

We freely use all basic notions of universal algebra that can be found in Ref. 2. Let � be a type
of algebras and let A be a class of algebras of type �. We denote by TermA the absolutely free
algebra of type � built from the set of variables X= �x1 ,x2 , . . .�. Let A�A. If t�TermA and
a1 , . . . ,an�A, by tA�a1 , . . . ,an� we denote the result of the application of the term operation tA to
the elements a1 , . . . ,an�A. If B�A, the subalgebra of A generated by B is denoted by �B�A.

Now we recall from Refs. 16 and 19 some notions of universal algebra and lattice theory that
will play an important role in what follows. Let L be a lattice and a ,b�L. We say that b covers
a if and only if a�b, and moreover there exists no x�L, such that a�x�b for any x. Suppose
that L is a bounded lattice with 0 the minimum element and 1 the maximum element. An element
p�L is called an atom if and only p covers 0 and a coatom if and only if 1 covers p. L is said to
be an atomistic lattice if and only if for each x�L− �0�, x= ∨ �p�x : p is an atom�. An element
c�L is said to be a complement of a if and only if a∧c=0 and a∨c=1. Let L= �L , ∨ , ∧ ,0 ,1� be
a bounded lattice. Given a ,b ,c in L, we write �a ,b ,c�D if and only if �a∨b�∧c
= �a∧c�∨ �b∧c�; �a ,b ,c�D� if and only if �a∧b�∨c= �a∨c�∧ �b∨c�, and �a ,b ,c�T if and only if
�a ,b ,c�D, �a ,b ,c�D� hold for all permutations of a ,b ,c. An element z of a lattice L is called
central if and only if for all elements a ,b�L we have �a ,b ,z�T and z is complemented. We
denote by Z�L� the set of all central elements of L and it is called the center of L.

A lattice with involution15 is an algebra �L , ∨ , ∧ ,¬� such that �L , ∨ ,∧� is a lattice and ¬ is
a unary operation on L that fulfills the following conditions: ¬¬x=x and ¬�x∨y�= ¬x∧ ¬y. An
orthomodular lattice is an algebra �L , ∧ , ∨ , ¬ ,0 ,1� of type �2,2 ,1 ,0 ,0� that satisfies the follow-
ing conditions.

�1� �L , ∧ , ∨ , ¬ ,0 ,1� is a bounded lattice with involution.
�2� x∧ ¬x=0.
�3� x∨ �¬x∧ �x∨y��=x∨y.

We denote by OML the variety of orthomodular lattices. It is well known that if H is a
Hilbert space then L�H�, the lattice of closed subspaces of H, also called Hilbert lattice, is an
atomistic orthomodular lattice. Boolean algebras are orthomodular lattices satisfying the distribu-
tive law x∧ �y∨z�= �x∧y�∨ �x∧z�. We denote by 2 the Boolean algebra of two elements. If L is a
bounded lattice then Z�L� is a Boolean sublattice of L �Ref. 19, Theorem 4.15�.

Let A be a Boolean algebra. A subset F of A is called a filter if and only if it satisfies the
following: if a�F and a�x then x�F and if a ,b�F then a∧b�F. F is a proper filter if and
only if F�A or, equivalently, 0�” F. If X�A, the filter FX generated by X is the minimum filter
containing X. It is well known that FX= �x�A : ∃x1¯xn�X with x1∧ ¯ ∧xn�x�. Each filter F
in A determines univocally a congruence in which the equivalence classes are given by �x�= �y
�A : ¬x∨y�F and x∨ ¬y�F�. In this case the quotient set A/	, noted as A /F, is a Boolean
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algebra and the natural application x� �x� is a Boolean homomorphism form A to A /F. A proper
filter F is maximal if and only if the quotient algebra A /F is isomorphic to 2. It is well known that
each proper filter can be extended to a maximal one. A very important property associated with
maximal filters is the following: suppose that x�y. Then there exists a maximal filter F in A, such
that x�F and y�” F. We will refer to this result as the maximal filter theorem.

III. CONTEXTUALITY AND MODALITY IN QUANTUM SYSTEMS

In the usual terms of quantum logic,3,14 a property of a system is related to a subspace of the
Hilbert space H of its �pure� states or, analogously, to the projector operator onto that subspace. A
physical magnitude M is represented by an operator M acting over the state space. For bounded
self-adjoint operators, conditions for the existence of the spectral decomposition M=
iaiPi

=
iai�ai��ai� are satisfied. The real numbers ai are related to the outcomes of measurements of the
magnitude M and projectors �ai��ai� to the mentioned properties. Thus, the physical properties of
the system are organized in the lattice of closed subspaces L�H�. Moreover, each self-adjoint
operator M has associated a Boolean sublattice WM of L�H� which we will refer to as the spectral
algebra of the operator M.

Assigning values to a physical quantity M is equivalent to establishing a Boolean homomor-
phism v :WM→2. Thus, we can say that it makes sense to use the “classical discourse”—this is,
the classical logical laws are valid—within the context given by M.

One may define a global valuation of the physical magnitudes over L�H� as a family of
Boolean homomorphisms �vi :Wi→2�i�I such that vi �Wi�Wj =v j �Wi�Wj for each i , j� I, being
�Wi�i�I the family of Boolean sublattices of L�H�.2 This global valuation would give the values of
all magnitudes at the same time maintaining a compatibility condition in the sense that whenever
two magnitudes shear one or more projectors, the values assigned to those projectors are the same
from every context. As we have proved in Ref. 8, the KS theorem in the algebraic terms of the
previous definition rules out this possibility.

Theorem 3.1: If H is a Hilbert space such that dim�H��2, then a global valuation over
L�H� is not possible. �

This impossibility to assign values to the properties at the same time satisfying compatibility
conditions is a weighty obstacle for the interpretation of the formalism.

We have introduced elsewhere9,10 a general modal scheme which extends the expressive
power of the orthomodular structure to provide a rigorous framework for the Born rule and mainly,
to discuss the restrictions posed by the KS theorem to possible properties. We recall here some
notions that will be useful in our development.

First, we enriched the orthomodular structure with a modal operator taking into account the
following considerations.

�1� Propositions about the properties of the physical system are interpreted in the orthomodular
lattice of closed subspaces of H. Thus, we retain this structure in our extension.

�2� Given a proposition about the system, it is possible to define a context from which one can
predicate with certainty about it together with a set of propositions that are compatible with
it and, at the same time, predicate probabilities about the other ones �Born rule�. In other
words, one may predicate truth or falsity of all possibilities at the same time, i.e., possibilities
allow an interpretation in a Boolean algebra. In rigorous terms, for each proposition p, if we
refer with �p to the possibility of p, then �p will be a central element of a orthomodular
structure.

�3� If p is a proposition about the system and p occurs, then it is trivially possible that p occurs.
This is expressed as p� �p.

�4� Let p be a property appertaining to a context M. Assuming that p is an actual property �for
example, the result of a filtering measurement� we may derive from it a set of propositions
�perhaps not all of them encoded in the original Hilbert lattice of the system� which we call
classical consequences. For example, let q be another property of the system and assign to q
the probability prob�q�=r via the Born rule and taking into account the truth of p. Then
equality prob�q�=r will be considered as a classical consequence of p. In fact, the main
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characteristic of this kind of classical consequences is that it is possible to simultaneously
predicate the truth of all of them �and the falsity of their negations� whenever p is true. The
formal representation of the concept of classical consequence is the following: A proposition
t is a classical consequence of p if and only if t is in the center of an orthomodular lattice
containing p and satisfies the property p� t. These classical consequences are the same ones
as those which would be obtained by considering the original actual property p as a possible
one �p. Consequently �p must precede all classical consequences of p. This is interpreted
in the following way: �p is the smallest central element greater than p.

From consideration 1, it follows that the original orthomodular structure is maintained. The
other considerations are satisfied if we consider a modal operator � over an orthomodular lattice
L defined as

�a = Min�z � Z�L�:a � z�

with Z�L� the center of L. When this minimum exists for each a�L we say that L is a Boolean
saturated orthomodular lattice. On each Boolean saturated orthomodular lattice, we can define the
necessity operator as a unary operation � given by �x= ¬ � ¬x. We have shown that this
enriched orthomodular structure can be axiomatized by equations conforming a variety denoted by
OML�.9 More precisely, each element of OML� is an algebra �L , ∧ , ∨ , ¬ , � ,0 ,1� of type
�2,2 ,1 ,1 ,0 ,0� satisfying the following equations:

S1 � x � x ,

S2 � 1 = 1,

S3 � � x = � x ,

S4 � �x ∧ y� = � �x� ∧ � �y� ,

S5 y = �y ∧ � x� ∨ �y ∧ ¬ � x� ,

S6 � �x ∨ � y� = � x ∨ � y ,

S7 � �¬x ∨ �y ∧ x�� � ¬ � x ∨ � y .

Orthomodular complete lattices are examples of Boolean saturated orthomodular lattices. We
can embed each orthomodular lattice L in an element L��OML� see �Ref. 9, Theorem 10�. In
general, L� is referred as a modal extension of L. In this case we may see the lattice L as a subset
of L�.

Let H be a complex Hilbert space associated with a quantum system. Since L�H� is a
complete lattice, it is a modal extension of itself. In what follows we build a basic framework for
nontrivial modal extensions of Hilbert lattices associated with quantum systems.

For each r�L�H�, consider the constant symbol r̄. We denote by CH the set of these con-
stants. Let �pi�i�I be another family of new constants such that CH� �pi�i�I=0” . Consider the
expansion of the language of OML� obtained by adding the set of constants CH� �pi�i�I. In this
language we want to build a Boolean saturated orthomodular structure, such that it contains the
equational theory of L�H� and that it is able to represent classical consequences through a fix
representation of a chosen constant pi. Consider the following sets of equations:

• book-keeping axioms: t�r1 , . . . ,rn�= tL�H��r1 , . . . ,rn�, where t�TermOML and r1 , . . . ,rn

�L�H�,
• center axioms: �x ,y , pi�T for each i� I.
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We denote by EQ�H� be the set of book-keeping axioms and by B�pi� be the set of center
axioms. Let us consider the following equational theory:

OML� � EQ�H� � B�pi� .

If we take the variety VH
� given by the mentioned equational system, each algebra of VH

� is a
Boolean saturated orthomodular lattice. The set of equations EQ�H� guarantees that the equational
theory of L�H� is maintained in each algebra through the subalgebra CH, which results to be an
isomorphic copy of L�H�. The set of equations B�pi� guarantees that each pi is a central element
in each algebra of VH

�. We will see that VH
� is a nonempty class of algebras. Consider the direct

product �IL�H�. Since �IL�H� is a complete orthomodular lattice then it belongs to OML�. The
canonical embedding L�H���IL�H� provides the natural interpretation of the set of constants
CH trivially satisfying the book-keeping axioms. To interpret the constant system �pi�i�I is a little
more delicate. By Ref. 13, Theorem 11, we have that Z��IL�H��=�I2 and then Card�I�
�Card�Z��IL�H���. Consequently we can establish an injective function p : I�Z��IL�H��. Thus
we can interpret each constant pi by the element p�i��Z��IL�H��, trivially satisfying the center
axioms. Hence �IL�H� is an example of VH

�-algebra and this class is nonempty. Note that for each
A�VH

�, the assignment r→ r̄ gives an orthomodular embedding from L�H� onto A, i.e., A results
a nontrivial modal extension of L�H�.

VH
� constitutes a basic framework for nontrivial modal extensions of Hilbert lattices L�H� in

the sense that it provides an underline structure for an algebraic study of the classical conse-
quences of propositions represented in L�H�. In fact, if p�L�H� represents a property about the
system, any classical consequence of this property will be represented via a constant pi. Depend-
ing on the kind of classical consequences of the properties of the physical system represented in H
that we want to consider, we would have to eventually add axioms which relate the set �pi�i�I and
the set CH, giving rise to substructures of VH

�.
Definition 3.2: Let L be an orthomodular lattice and L��OML� be a modal extension of

L. We define the possibility space of L in L� as

�L = ���p:p � L��L�.

The possibility space represents the modal content added to the discourse about properties of the
system.

Proposition 3.3: �Reference 9, Proposition 14� Let L be an orthomodular lattice, W a Boolean
sublattice of L, and L��OML� a modal extension of L. Then �W� �L�L� is a Boolean
sublattice of L�. In particular, �L is a Boolean sublattice of Z�L��. �

Now, we develop the algebraic counterpart of the classical notion of consequence which will
be useful when formalizing the concept of possibility in MWI. As will become clear below,
Proposition 3.3 allows to establish a deep relation between this concept and the possibility space.

Definition 3.4: Let L be an orthomodular lattice, p�L, and L��OML� a modal extension
of L. Then x� �L is said to be a classical consequence of p if and only if for each Boolean
sublattice W in L �with p�W� and each Boolean valuation v :W→2, v�x�=1 whenever v�p�=1.
We denote by ConsL��p� the set of classical consequences of L.

Proposition 3.5: Let L be an orthomodular lattice, p�L, and L��OML� a modal exten-
sion of L. Then we have that

ConsL��p� = �x � � L:p � x� = �x � � L: � p � x� .

Proof: By definition of � it is clear that �x� �L : p�x�= �x� �L : �p�x� and the inclu-
sion �x� �L : �p�x��ConsL��p� is trivial. Let x�ConsL��p�. Assume that p�x. Consider
the Boolean subalgebra of L given by W= �p , ¬p ,0 ,1�. By Proposition 3.3, W�= �W� �L�L� is
a Boolean sublattice of L�. By the maximal filter theorem, there exists a maximal filter F in W�,
such that p�F and x�” F. If we consider the quotient Boolean algebra W� /F and the natural
Boolean homomorphism f :W�→W� /F=2, then f�p�=1 and f�x�=0, which is a contradiction. �
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Let L be an orthomodular lattice, �Wi�i�I the family of Boolean sublattices of L, and L� a
modal extension of L. If f : �L→2 is a Boolean homomorphism, an actualization compatible
with f is a global valuation �vi :Wi→2�i�I, such that vi �Wi� �L= f �Wi� �L for each i� I.
Compatible actualizations represent the passage from possibility to actuality.

Theorem 3.6: �Reference 9, Theorem 19� Let L be an orthomodular lattice. Then L admits a
global valuation if and only if for each possibility space there exists a Boolean homomorphism
f : �L→2 that admits a compatible actualization. �

The addition of modalities to the discourse about the properties of a quantum system enlarges
its expressive power. At first sight it may be thought that this could help to circumvent contextu-
ality, allowing to refer to physical properties belonging to the system in an objective way that
resembles the classical picture. Since the possibility space is a Boolean algebra, there exists a
Boolean valuation of the possible properties. But in view of the last theorem, a global actualization
that would correspond to a family of compatible valuations is prohibited. Thus, the theorem states
that the contextual character is maintained even when the discourse is enriched with modalities.

IV. AN ALGEBRAIC FRAME FOR MANY WORLDS

In the MWI, all possibilities encoded in the wave function take place, but in different worlds.
More precisely, let M be a physical magnitude represented by an operator M with spectral
decomposition M=
iaiPi. If a measurement of M is performed and a1 occurs, then in another
world a2 occurs, in some other world a3 occurs, etc. Let us now see how we can introduce our
modal algebraic frame for MWI.

Let H be a Hilbert space and suppose that M has associated a Boolean sublattice WM of
L�H�. The family �Pi�i is identified as elements of WM. If a measurement is performed and its
result is ai, this means that we can establish a Boolean homomorphism,

vi:WM → 2 s.t. vi�Pi� = 1.

A. OML�-consequences

In a possible world where vi�Pi�=1 we will have classical consequences. We can take an
arbitrary modal extension L� of L�H� and consider the set ConsL��Pi�. The modal extension
does not depend on the valuation over the family �Pi�i. Thus, it is clear that the modal extension
is independent of any possible world. Modal extensions are simple algebraic extensions of an
orthomodular structure. By Proposition 3.5 we have that ConsL��Pi�= �x� �L�H� : �Pi�x�.
Thus, for any arbitrary modal extension L� of L�H� in terms of classical consequences, the
classical consequences of vi�Pi�=1 are exactly the same ones as �Pi �independently of any
possible splitting�. In terms of classical consequences which refer to a property Pi, it is the same
to consider the classical consequences in the possible world where vi�Pi�=1, than to study the
classical consequences of �Pi before the splitting.

MWI maintains that in each respective i-world, vi�Pi�=1 for each i. Thus, a family of valu-
ations �vi�Pi�=1�i may be simultaneously considered, each member being realized in each differ-
ent i-world. From an algebraic perspective, this would be equivalent to have a family of pairs
�L�H� ,vi�Pi�=1�i, each pair being the orthomodular structure L�H� with a distinguished Boolean
valuation vi over a spectral subalgebra containing Pi, such that vi�Pi�=1. In what follows, we will
show that the OML� structure is able to capture this fact in terms of classical consequences. For
this purpose, the following proposition is needed.

Proposition 4.1: Let H be Hilbert space, such that dim�H��2 and a ,b be a two distinct
atoms in L�H�. If we consider a modal extension L� of L�H�, then ��a�= � �b�.

Proof: Let a ,b be two distinct atoms in L�H�. By Ref. 16, Theorem 8 �CH.3�, there exists a
common complement c of a ,b, i.e., 0=a∧c=b∧c and 1=a∨c=b∨c. Since L�H��L� is an
OML-embedding, c is a common complement of a ,b in L�. We first note ¬� ¬c= �c�c, then
a∧ ¬ � ¬c�a∧c=0. Since ¬� ¬c is a central element, a� ⋄ ¬c and ⋄a� ⋄ ¬c. Since a∨c
=1 then ¬a∧ ¬c=0. Therefore, ¬c∧ ¬ �a� ¬a∧ ¬c=0. Since ¬�a is a central element then
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¬c� �a and �¬c� �a. With the same argument we can prove that ��b�= � �¬c�. Hence
��a�= � �b�. �

The following theorem is crucial in order to relate MWI with modality in terms of valuations
and classical consequences.

Theorem 4.2: Let H be Hilbert space such that dim�H��2 and �pi�i�I be a family of
elements of L�H�, such that pi�0 for each i� I. If we consider a modal extension L�H��L�

then there exists a Boolean homomorphism v : �L→2, such that v��pi�=1 for each i� I.
Proof: Since L�H� is an atomic lattice, for each pi there exists an atom ai, such that ai� pi.

Let I0 be a finite subfamily of I. By Proposition 4.1, we have that 0�∧i�I0
� �ai��∧i�I0

� �pi�.
Therefore, the family ��pi�ı�I generates a proper filter F in the Boolean algebra �L. Extending
F to a maximal filter FM, the natural Boolean homomorphism v : �L→2 satisfies that for each
i� I, v��pi�=1. �

While MWI considers a family of pairs �L�H� ,vi�Pi�=1�i for each possible i-world and the
classical consequences of vi�Pi�=1 in the i-world, the OML� structure, by Proposition 3.5,
considers classical consequences of each vi�Pi�=1 coexisting simultaneously in one and the same
structure, what is possible in view of Theorem 4.2. More precisely, as a valuation v : �L→2
exists such that v��Pi�=1 for each i, each element x� �L such that Pi�x necessarily satisfies
v�x�=1.

B. Many worlds and Kochen–Specker-type theorems

KS theorem does not impose conditions on both the family of valuations vi�Pi�=1, considered
as a family of pairs �L�H� ,vi�Pi�=1�i in MWI nor on the Boolean valuation v : �L�H�→2
satisfying v��Pi�=1 for each i in the OML� structure �Theorem 4.2�. In fact, by Theorem 3.6
KS only prevents from extending the valuation v : �L�H�→2 to L�H� in a compatible manner.
In the wording previous to Theorem 3.6, KS theorem prohibits to pass from the realm of possi-
bility to that of actuality in the sense that it precludes to establish a compatible actualization for
v : �L�H�→2 to L�H� when dim�H��2 �see Theorem 3.1�.

In its algebraic version given in Theorem 3.1, KS only imposes a limit to the possibility of
establishing compatible valuations over L�H� when dim�H��2 but does not cause incompatibili-
ties when reference is made to possible global valuations in the realm of possibilities considered
in the OML� structure or in the family �L�H� ,vi�Pi�=1�i from MWI. Thus, valuations over
different i-worlds are admitted.

V. CONCLUSIONS

In this paper we have analyzed the orthomodular formal structure of quantum mechanics in
relation to both MWI and MI. In order to deal with logical possibility in these interpretations, we
considered two different algebraic approaches which were characterized in Secs. III and IV. In the
case of MWI, the structure is the family of pairs �L�H� ,vi�Pi�=1�i of orthomodular lattices with
a distinguished Boolean valuation that assigns “true” to a projector of a spectral algebra in each
one of them. For MI, we have the Boolean saturated orthomodular lattice. Both structures allow us
to compare the role of contextuality in relation to the formal account of actual and possible
properties in a rigorous way as it is shown in Table I.

The modal scheme we developed in Ref. 9, i.e., the Boolean saturated orthomodular lattice, is
also adequate to consider the notion of possibility within MWI. The whole set of possible worlds,
each one with an actualized value of a property, is algebraically equivalent to the set of valuations
to “true” of the possible properties in L�. That is to say, the actualization of each value of a given
property in each i-world is analogous to the assignment of the value “true” to all possible prop-
erties in the scheme of MI.

We have shown that the KS theorem only imposes a limit to the possibility of establishing
compatible valuations over L�H�. However, there is no incompatibility when reference is only
made to valuations in the realm of possibilities, i.e., in the OML� structure for MI or in the
family �L�H� ,vi�Pi�=1�i for MWI.
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Families of Boolean valuations
�vi�Pi�=1�i, may be simultaneously

considered, each member
being realized in each

different i-world

KS theorem

Precludes to establish
compatible actualizations for

v : � �L�H��→2 to L�H�

Does not cause incompatibility
when each member of a family

of valuations �vi�Pi�=1�i is
considered
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