12 research outputs found

    Kinetics of PAA Demand and its Implications on Disinfection of Wastewaters

    Get PDF
    Abstract Disinfectant demand and microbial inactivation rate are essential issues for assessing disinfection performance and proper design of disinfecting systems. In the United Kingdom and Italy, peracetic acid (PAA) has recently become an accepted disinfectant for treating wastewaters prior to reuse in agriculture, and its use is likely to spread worldwide due to its efficacy as well as the benign nature of the by-products produced. In this paper, overall PAA demand during the advanced disinfection of municipal wastewater for agricultural reuse was evaluated under different experimental conditions. Batch tests were carried out using primary and secondary settled effluents sampled at the City of Taranto municipal wastewater treatment plant. PAA dosages ranged from 1.5 to 8.5 mg/L and from 21 to 40 mg/L for the secondary and primary settled effluents, respectively. Residual PAA was measured after contact times ranging from 1 to 60 min. Results showed that after a strong and almost instantaneous initial disinfectant consumption, the PAA consumption followed first-order kinetics with both effluents. The effluent characteristics affected the values of the parameters in the consumption model. PAA disinfection efficacy was assessed in terms of total coliform and Escherichia coli indicator organism reduction; better results were achieved with the latter. The approximate solution of Hom's model established by Haas and Joffe was used to model inactivation kinetics of both microbial targets

    Impact of pH and removed filtrate on E. coli regrowth and microbial community during storage of electro-dewatered biosolids

    No full text
    Residual biosolids can be land applied if they meet microbiological requirements at the time of application. Electro-dewatering technology is shown to reduce biosolids bacterial counts to detection limits with little potential for bacterial regrowth during incubations. Here, we investigated the impacts on Escherichia coli regrowth and microbial communities of biosolids pH, removed nutrients via the filtrate, and inhibitory compounds produced in electro-dewatered biosolids. Findings suggest pH as the primary mechanism impacting E. coli regrowth in electro-dewatered biosolids. Propidium monoazide treatments were effective at removing DNA from dead cells, based on the removal of obligate anaerobes observed after anaerobic incubation. Analyses of high throughput sequenced data showed lower alpha-diversities associated with electro-dewatering treatment and incubation time. Moreover, biosolids pH and incubation period were the main factors contributing to the variations in microbial community compositions after incubation. Results highlight the role of electro-dewatered biosolids' low pH on inhibiting the regrowth of culturable bacteria as well as reducing the microbial community variance.[Display omitted]•pH was the main parameter impacting E. coli regrowth in electro-dewatered biosolids.•Alpha diversity was impacted by biosolids treatment, pH, and incubation period.•Microbial community compositions after PMA treatment comprise the regrowing species.•pH and incubation time were main factors shaping overall microbial communities

    Biological and physicochemical wastewater treatment processes reduce the prevalence of virulent Escherichia coli

    No full text
    Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Qu\ue9bec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.Peer reviewed: YesNRC publication: Ye

    Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic escherichia coli in wastewater effluents

    No full text
    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.Peer reviewed: YesNRC publication: Ye

    Metal Nanoparticle Pollutants Interfere with Pulmonary Surfactant Function In Vitro☆

    Get PDF
    Reported associations between air pollution and pulmonary and cardiovascular diseases prompted studies on the effects of gold nanoparticles (Au NP) on pulmonary surfactant function. Low levels (3.7 mol % Au/lipid, 0.98% wt/wt) markedly inhibited adsorption of a semisynthetic pulmonary surfactant (dipalmitoyl-phosphatidylcholine (DPPC)/palmitoyl-oleoyl-phosphatidylglycerol/surfactant protein B (SP-B); 70:30:1 wt %). Au NP also impeded the surfactant's ability to reduce surface tension (γ) to low levels during film compression and to respread during film expansion. Transmission electron microscopy showed that Au NP generated by a seed-growth method were spherical with diameters of ∼15 nm. Including palmitoyl-oleoyl-phosphatidylglycerol appeared to coat the NP with at least one lipid bilayer but did not affect NP shape or size. Similar overall observations occurred with dimyristoyl phosphatidylglycerol. Dipalmitoyl-phosphatidylglycerol was less effective in NP capping, although similar sized NP were formed. Including SP-B (1% wt/wt) appears to induce the formation of elongated strands of interacting threads with the fluid phosphatidylglycerols (PG). Including DPPC resulted in formation of aggregated, less spherical NP with a larger size distribution. With DPPC, strand formation due to SP-B was not observed. Agarose gel electrophoresis studies demonstrated that the aggregation induced by SP-B blocked migration of PG-coated NP. Migration was also influenced by the fluidity of the PGs. It is concluded that Au NP can interact with and sequester pulmonary surfactant phospholipids and, if inhaled from the atmosphere, could impede pulmonary surfactant function in the lung
    corecore