361 research outputs found

    Ariel - Volume 2 Number 5

    Get PDF
    Editors Delvyn C. Case, Jr. Paul M. Fernhoff News Editors Richard Bonanno Robin A. Edwards Features Editors Stephen P. Flynn Steven A. Ager Lay-Out Editor Carol Dolinskas Contributing Editors Michael J. Blecker W. Cherry Light Eugenia Miller Lin Sey Edwards Jack Guralnik Tom Williams James Noco

    American Kestrel Migration: Insights and Challenges from Tracking Individuals Across the Annual Cycle

    Get PDF
    Natural variation in migratory strategies across the range of the American Kestrel (Falco sparverius) creates a unique opportunity for comparative research of annual cycles. However, it can be logistically and technically challenging to track such a small but highly mobile species. We tagged American Kestrels with light-level geolocators or satellite transmitters with the aim of estimating migration timing and connectivity, and we monitored a subset of satellite-tagged individuals during the breeding season to assess transmitter function and wear. We recovered geolocators from six of 49 (12%) tagged individuals. One geolocator-tagged individual migrated approximately 1235 km from its Idaho breeding grounds to New Mexico near the Arizona border for the winter and returned to Idaho the following spring. The other five recaptured individuals remained near (\u3c 200 km) the breeding grounds year-round. The low reliability of recovery and low precision of locations suggested major limitations of using geolocators to track this species. Most satellite transmitters (18 of 22, 82%) failed prior to migration, but one satellite-tagged individual migrated approximately 5945 km from Canada to Nicaragua, and three others transmitted ≥1 location during migration. Transmitters stopped functioning while on live individuals despite showing no visible damage and maintaining adequate battery levels. These results suggest further testing and development are needed before these recently developed tags are deployed again on American Kestrels. Both individuals with complete migration tracks showed evidence of short distance (250–350 km) post-breeding movements to southern stopover sites where they stayed 1–3 mo before migrating onward. Although sample sizes were small, migration patterns were consistent with latitudinal leap-frog patterns described in previous studies and revealed an interesting pattern of a prolonged post-breeding stopover before longer migration. Further, the migration track from Canada to Nicaragua represents the longest recorded migration path for this species

    Space Environments and Spacecraft Effects Organization Concept

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization

    An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas

    Options for Affordable Fission Surface Power Systems

    Get PDF
    Fission surface power systems could provide abundant power anywhere on free surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized; however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems

    Lease hunting opportunities for Oklahoma landowners

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Options for Affordable Planetary Fission Surface Power Systems

    Get PDF
    Nuclear fission systems could serve as "workhorse" power plants for the Vision for Space Exploration. In this context, the "workhorse" power plant is defined as a system that could provide power anywhere on the surface of the moon or Mars, land on the moon using a Robotic Lunar Exploration Program (RLEP)-developed lander, and would be a viable, affordable option once power requirements exceed that which can be provided by existing energy systems

    Urban Multifunctional Land Use: Theoretical and Empirical Insights on Economies of Scale, Scope and Diversity

    Get PDF
    A recent planning device aimed at dealing with land scarcity is the propagation of multifunctional land use. This paper describes the evolution of urban planning concepts and their links to economic theory. We argue that the most distinctive feature of multifunctional land use is its emphasis on return to diversity. This concept is rooted in the modern economic theory of agglomeration. Empirical evidence is shown to provide some support for the quantitative relevance of return to diversity, but is still to a large extent in its infancy. More evidence is required for policy purposes aimed at identifying the optimal extent to which multifunctional land use projects have to be pursued

    An Institutional Theory perspective on sustainable practices across the dairy supply chain

    Get PDF
    AbstractThe need for sustainable practices in the food supply chain, particularly in the area of energy reduction, is becoming acute. The food industry currently has to contend with multiple competing pressures alongside the new challenges of sustainable production. We applied Institutional Theory to explore the role of supermarkets in the development of legitimate sustainable practices across the dairy supply chains. The paper focuses on dairy supply chain organizations and their consumption of energy. We conducted 70 semi-structured telephone interviews with various stakeholders across the supply chain. Findings revealed that the majority of actors in the supply chain identified supermarkets as the dominant player, and that the supermarkets exert pressure on other smaller organizations across the supply chain. Although some organizations wished to pursue a sustainable agenda through integrating new rules and legitimate practices within their own organization, the dominant logic appeared to be one of cost reduction and profit maximization. There was also evidence that supermarkets and other large organizations attempt to replicate publicly available information on green successes for image purposes. We conclude that the dominant logic of cost reduction is so well established that challenging the dominant logic may prove difficult. The challenge is therefore to complement the dominant logic with sustainable practices across the whole supply chain, a role Government needs to play. This will require a broader more systemic approach to encouraging sustainable practices including investment and financing practices, so that all members of the dairy supply chain can co-operate and contribute to energy reduction
    • …
    corecore