48 research outputs found
Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase
<p>Abstract</p> <p>Background</p> <p>HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) have been used in the clinic for over twenty years. Interestingly, the complete resistance pattern to this class has not been fully elucidated. Novel mutations in RT appearing during treatment failure are still being identified. To unravel the role of two of these newly identified changes, E40F and K43E, we investigated their effect on viral drug susceptibility and replicative capacity.</p> <p>Results</p> <p>A large database (Quest Diagnostics database) was analysed to determine the associations of the E40F and K43E changes with known resistance mutations. Both amino acid changes are strongly associated with the well known NRTI-resistance mutations M41L, L210W and T215Y. In addition, a strong positive association between these changes themselves was observed. A panel of recombinant viruses was generated by site-directed mutagenesis and phenotypically analysed. To determine the effect on replication capacity, competition and <it>in vitro </it>evolution experiments were performed. Introduction of E40F results in an increase in Zidovudine resistance ranging from nine to fourteen fold depending on the RT background and at the same time confers a decrease in viral replication capacity. The K43E change does not decrease the susceptibility to Zidovudine but increases viral replication capacity, when combined with E40F, demonstrating a compensatory role for this codon change.</p> <p>Conclusion</p> <p>In conclusion, we have identified a novel resistance (E40F) and compensatory (K43E) change in HIV-1 RT. Further research is indicated to analyse the clinical importance of these changes.</p
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
FSP1 is a glutathione-independent ferroptosis suppressor
Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been believed to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is critical to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10 (CoQ10)): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1–CoQ10–NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis
Molecular Characterization of Clinical Isolates of Human Immunodeficiency Virus Resistant to the Protease Inhibitor Darunavir ▿ †
Darunavir is the most recently approved human immunodeficiency virus (HIV) protease (PR) inhibitor (PI) and is active against many HIV type 1 PR variants resistant to earlier-generation PIs. Darunavir shows a high genetic barrier to resistance development, and virus strains with lower sensitivity to darunavir have a higher number of PI resistance-associated mutations than viruses resistant to other PIs. In this work, we have enzymologically and structurally characterized a number of highly mutated clinically derived PRs with high levels of phenotypic resistance to darunavir. With 18 to 21 amino acid residue changes, the PR variants studied in this work are the most highly mutated HIV PR species ever studied by means of enzyme kinetics and X-ray crystallography. The recombinant proteins showed major defects in substrate binding, while the substrate turnover was less affected. Remarkably, the overall catalytic efficiency of the recombinant PRs (5% that of the wild-type enzyme) is still sufficient to support polyprotein processing and particle maturation in the corresponding viruses. The X-ray structures of drug-resistant PRs complexed with darunavir suggest that the impaired inhibitor binding could be explained by change in the PR-inhibitor hydrogen bond pattern in the P2′ binding pocket due to a substantial shift of the aminophenyl moiety of the inhibitor. Recombinant virus phenotypic characterization, enzyme kinetics, and X-ray structural analysis thus help to explain darunavir resistance development in HIV-positive patients
Human Immunodeficiency Virus Type 1 Isolates with the Reverse Transcriptase (RT) Mutation Q145M Retain Nucleoside and Nonnucleoside RT Inhibitor Susceptibility▿
Q145M, a mutation in a conserved human immunodeficiency virus type 1 reverse transcriptase (RT) region, was reported to decrease susceptibility to multiple RT inhibitors. We report that Q145M and other Q145 mutations do not emerge with RT inhibitors nor decrease RT inhibitor susceptibility. Q145M should not, therefore, be considered an RT inhibitor resistance mutation
Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase-1
four days and after 2, 4 and 6 passages the relative presence of both viruses in the culture was determined by sequencing. Shown are two representative experiments. The variability in each independent experiment is indicated by ± standard error of the mean (SEM). A: Pat A (E40F, M41L, K43E, M184V, L210W, T215Y and K219T) versus Pat A-WT43 (E40F, M41L, M184V, L210W, T215Y and K219T). B: wild type versus wild type+K43E. C: M41L+T215Y versus M41L+T215Y+K43E. D: M41L+T215Y+E40F versus M41L+T215Y+E40F+K43E.<p><b>Copyright information:</b></p><p>Taken from "Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase"</p><p>http://www.retrovirology.com/content/5/1/20</p><p>Retrovirology 2008;5():20-20.</p><p>Published online 13 Feb 2008</p><p>PMCID:PMC2276231.</p><p></p