24 research outputs found

    30-y follow-up of a Pu/Am inhalation case

    Get PDF
    In 1983, a young man inhaled accidentally a large amount of plutonium and americium. This case was carefully followed until 2013. Since no decorporation measures had been taken, the undisturbed metabolism of Pu and Am can be derived from the data. First objective was to determine the amount of inhaled radionuclides and to estimate committed effective dose. In vivo and excretion measurements started immediately after the inhalation, and for quality assurance, all types of measurements were performed by different labs in Europe and the USA. After dose assessment by various international groups were completed, the measurements were continued to produce scientific data for model validation. The data have been analysed here to estimate lung absorption parameter values for the inhaled plutonium and americium oxide using the proposed new ICRP Human Respiratory Tract Model. As supplement to the biokinetic modelling, biological data from three different cytogenetic markers have been added. The estimated committed effective dose is in the order of 1 Sv. The subject is 30 y after the inhalation, of good health, according to a recent medical check-u

    Uncertainty of fast biological radiation dose assessment for emergency response scenarios

    Get PDF
    Purpose: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Materials and Methods: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. Results: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Conclusions: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization

    Review of retrospective dosimetry techniques for external ionising radiation exposures

    Get PDF
    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. © The Author 2010. Published by Oxford University Press. All rights reserved

    RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA)

    Get PDF
    Purpose: Two quality controlled inter-laboratory exercises were organized within the EU project ‘Realizing the European Network of Biodosimetry (RENEB)’ to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. Materials and methods: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. Results: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. Conclusions: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners

    Automated micronucleus (MN) scoring for population triage in case of large scale radiation events

    No full text
    Purpose: In case of a large-scale radiation accident when hundreds of people may be exposed, it is important to distinguish the severely exposed individuals (>= 1 gray), who require early medical treatment, from those less exposed. The aim of our study was to develop a quick population triage method based on automated micronucleus (MN) scoring. Materials and methods: Using the MN software module developed by MetaSystems specifically for the Metafer4 platform, about 60 blood samples can be scored in one day. Standard dose response curves were determined for manual and automated MN scoring. Results: The automated MN assay results were closely correlated with MN yields obtained with the manual procedure. A dose of I Gy can be estimated with an uncertainty of 0.2 Gy. Corrections for false positives and false negatives by visual inspection of the image gallery did not result in an improved accuracy or reproducibility. To test the automated MN assay in a multicenter setting, an inter-laboratory comparison was performed whereby irradiated blood samples were processed in Ghent University (Belgium) and BfS (Bundesamt fuer Strahlenschutz; Germany). Both laboratories obtained comparable results. Conclusions: These results confirm the efficacy of the automated MN assay for fast population triage in a multicenter setting, in the case of large radiation accidents

    Biological dosimetry by the triage dicentric chromosome assay - Further validation of international networking

    No full text
    Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labor-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A com

    Multibiodose radiation emergency triage categorization software

    No full text
    In this note, the authors describe the MULTIBIODOSE software, which has been created as part of the MULTIBIODOSE project. The software enables doses estimated by networks of laboratories, using up to five retrospective (biological and physical) assays, to be combined to give a single estimate of triage category for each individual potentially exposed to ionizing radiation in a large scale radiation accident or incident. The MULTIBIODOSE software has been created in Java. The usage of the software is based on the MULTIBIODOSE Guidance: the program creates a link to a single SQLite database for each incident, and the database is administered by the lead laboratory. The software has been tested with Java runtime environment 6 and 7 on a number of different Windows, Mac, and Linux systems, using data from a recent intercomparison exercise. The Java program MULTIBIODOSE_1.0.jar is freely available to download from http://www.multibiodose.eu/software or by contacting the software administrator: [email protected]

    Interlaboratory comparison of the dicentric chromosome assay for radiation biodosimetry in mass casualty events

    No full text
    This interlaboratory comparison validates the dicentric chromosome assay for assessing radiation dose in mass casualty accidents and identifies the advantages and limitations of an international biodosimetry network. The assay's validity and accuracy were determined among five laboratories following the International Organization for Standardization guidelines. Blood samples irradiated at the Armed Forces Radiobiology Research Institute were shipped to all laboratories, which constructed individual radiation calibration curves and assessed the dose to dose-blinded samples. Each laboratory constructed a dose-effect calibration curve for the yield of dicentrics for 60Co γ rays in the 0 to 5-Gy range, using the maximum likelihood linear-quadratic model, Y = c + αD + βD2. For all laboratories, the estimated coefficients of the fitted curves were within the 99.7% confidence intervals (CIs), but the observed dicentric yields differed. When each laboratory assessed radiation doses to four dose-blinded blood samples by comparing the observed dicentric yield with the laboratory's own calibration curve, the estimates were accurate in all laboratories at all doses. For all laboratories, actual doses were within the 99.75% CI for the assessed dose. Across the dose range, the error in the estimated doses, compared to the physical doses, ranged from 15% underestimation to 15% overestimation

    A new cytogenetic biodosimetry image repository for the dicentric assay

    No full text
    The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of ~25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases
    corecore