108 research outputs found

    Decoupling of optoelectronic properties from morphological changes in sodium treated kesterite thin film solar cells

    Full text link
    Sodium is typically used during the synthesis of kesterite thin films to enhance the performance of solar cells. As sodium tends to affect grain growth and morphology, it is difficult to analyse solely the electronic effects of sodium as dopant. To decouple the structural and electronic effects from each other, two processes were designed in this work to successfully incorporate sodium into a vacuum-processed Cu2ZnSnSe4absorber without changing the morphology. A thin layer of NaF is deposited before precursor deposition (Pre-NaF) or after absorber synthesis to undergo a post deposition treatment (NaF-PDT). While composition and distribution of matrix elements remain unchanged, the sodium concentration is increased upon sodium treatment up to 140 ppm as measured by inductively coupled plasma mass spectrometry. X-ray photoelectron spectroscopy showed that the surface composition was not altered. Within its detection limit, sodium was not present at the absorber surface. For a Pre-NaF sample measured with atom probe tomography a sodium concentration of 30 ppm was measured in a grain, suggesting that sodium might segregate at grain boundaries. The additional sodium content in the film leads to an increased acceptor concentration, which results in improved open-circuit voltage and fill factor.Financial support from the Swiss National Science Foundation (SNF) in the network of the Indo-Swiss Joint Research Programme (ISJRP) [IZLIZ2_157140/1] is gratefully acknowledged. T. Schwarz is grateful for the support of the German Research Foundation (DFG) [Contract GA 2450/1-1]. R. Caballero acknowledges financial support from Spanish MINECO within the Ramón y Cajal program [RYC-2011-08521], MINECO project WINCOST [ENE2016-80788-C5-2-R] and from Spanish Ministry of Education, Culture and Sport within the José Castillejo program [CAS 15/00070

    Complex Chalcogenides as Promising Materials for Colar Cells

    Get PDF
    Проведено огляд сучасного стану виробництва сонячних елементів та місце у ньому тонкоплівкових фотовольтаїчних комірок на основі складних халькогенідів. Визначено основні проблеми у дослідженні та пошуку цих матеріалів та показано деякі власні результати, що можуть стати базою для створення СЕ із покращеними характеристиками. A review of the modern state of the solar cell production and the place in it of the thin-film photovoltaic cells based on complex chalcogenides is presented. Major challenges in the search for and the investigation of such materials are defined, and our results are presented that may be the basis for the creation of solar cells with improved characteristics

    A spectroscopic analysis of the chemically peculiar star HD207561

    Full text link
    In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD207561. During a survey programme to search for new roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant photometric variability on two consecutive nights in the year 2000. The amplitude spectra of the light curves obtained on these two nights showed oscillations with a frequency of 2.79 mHz [P~6-min]. However, subsequent follow-up observations could not confirm any rapid variability. In order to determine the spectroscopic nature of HD207561, high-resolution spectroscopic and spectro-polarimetric observations were carried out. A reasonable fit of the calculated Hbeta line profile to the observed one yields the effective temperature (Teff) and surface gravity (log g) as 7300 K and 3.7 dex, respectively. The derived projected rotational velocity (vsin i) for HD207561 is 74 km/sec indicative of a relatively fast rotator. The position of HD207561 in the H-R diagram implies that this is slightly evolved from the main-sequence and located well within the delta-Scuti instability strip. The abundance analysis indicates the star has slight under-abundances of Ca and Sc and mild over-abundances of iron-peak elements. The spectro-polarimetric study of HD207561 shows that the effective magnetic field is within the observational error of 100 gauss (G). The spectroscopic analysis revealed that the star has most of the characteristics similar to an Am star, rather than an Ap star, and that it lies in the delta-Scuti instability strip; hence roAp pulsations are not expected in HD207561, but low-overtone modes might be excited.Comment: 8 pages, 7 figures, 3 tables. Accepted for pubblication in MNRA

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 201920202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): And randomised, phase 3, open-label, multicentre study

    Get PDF
    Background: Bortezomib with dexamethasone is a standard treatment option for relapsed or refractory multiple myeloma. Carfilzomib with dexamethasone has shown promising activity in patients in this disease setting. The aim of this study was to compare the combination of carfilzomib and dexamethasone with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods: In this randomised, phase 3, open-label, multicentre study, patients with relapsed or refractory multiple myeloma who had one to three previous treatments were randomly assigned (1:1) using a blocked randomisation scheme (block size of four) to receive carfilzomib with dexamethasone (carfilzomib group) or bortezomib with dexamethasone (bortezomib group). Randomisation was stratified by previous proteasome inhibitor therapy, previous lines of treatment, International Staging System stage, and planned route of bortezomib administration if randomly assigned to bortezomib with dexamethasone. Patients received treatment until progression with carfilzomib (20 mg/m2 on days 1 and 2 of cycle 1; 56 mg/m2 thereafter; 30 min intravenous infusion) and dexamethasone (20 mg oral or intravenous infusion) or bortezomib (1·3 mg/m2; intravenous bolus or subcutaneous injection) and dexamethasone (20 mg oral or intravenous infusion). The primary endpoint was progression-free survival in the intention-to-treat population. All participants who received at least one dose of study drug were included in the safety analyses. The study is ongoing but not enrolling participants; results for the interim analysis of the primary endpoint are presented. The trial is registered at ClinicalTrials.gov, number NCT01568866. Findings: Between June 20, 2012, and June 30, 2014, 929 patients were randomly assigned (464 to the carfilzomib group; 465 to the bortezomib group). Median follow-up was 11·9 months (IQR 9·3-16·1) in the carfilzomib group and 11·1 months (8·2-14·3) in the bortezomib group. Median progression-free survival was 18·7 months (95% CI 15·6-not estimable) in the carfilzomib group versus 9·4 months (8·4-10·4) in the bortezomib group at a preplanned interim analysis (hazard ratio [HR] 0·53 [95% CI 0·44-0·65]; p<0·0001). On-study death due to adverse events occurred in 18 (4%) of 464 patients in the carfilzomib group and in 16 (3%) of 465 patients in the bortezomib group. Serious adverse events were reported in 224 (48%) of 463 patients in the carfilzomib group and in 162 (36%) of 456 patients in the bortezomib group. The most frequent grade 3 or higher adverse events were anaemia (67 [14%] of 463 patients in the carfilzomib group vs 45 [10%] of 456 patients in the bortezomib group), hypertension (41 [9%] vs 12 [3%]), thrombocytopenia (39 [8%] vs 43 [9%]), and pneumonia (32 [7%] vs 36 [8%]). Interpretation: For patients with relapsed or refractory multiple myeloma, carfilzomib with dexamethasone could be considered in cases in which bortezomib with dexamethasone is a potential treatment option. Funding: Onyx Pharmaceuticals, Inc., an Amgen subsidiary

    Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering

    No full text
    Electron transport in Sb-doped SnO2 (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm2 V−1 s−1 to 6 cm2 V−1 s−1 when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10−3 Ω cm corresponding to the mobility of 12 cm2 V−1 s−1 which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO2 films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size
    corecore