54 research outputs found

    Single nucleotide polymorphism markers with applications in aquaculture and assessment of its impact on natural populations

    Get PDF
    An increase in aquatic animal production can be achieved by extending aquaculture areas geographically, utilizing new species for culture, and using new technologies. Among new technologies useful for the increase of aquaculture production is the application of genetics and genomics. New molecular tools that benefit aquaculture have been developed. There has been a large number of experimental and review papers published concerning molecular markers and the range of their applications, including aquaculture and food product analyses. Analysis of single nucleotide polymorphisms (SNPs) has emerged as genotyping technology with wide and significant applications in aquaculture. SNPs can be used for construction of genetic linkage maps, finding quantitative trait loci (QTL) for useful traits like growth, body weight, grilsing, thermal and low oxygen tolerance, resistance to stress and diseases, mapping sex determination loci and identification of progeny in selection and chromosome manipulation experiments, assessment of genomic selectionand marker assisted selection in aquaculture. Genome-wide association studies (GWAS) facilitate the finding associations between SNPs and a trait in related or unrelated specimens. However, many traits are complex and can be controlled by number of QTL. Genotyping by genome reduction complexity sequencing emerged as an efficient and applicable technology in genomic selection. Identification of genes, sequences and nucleotides (substitutions) directly influencing phenotypic variations opens the possibility of marker-assisted selection for desirable characters in culture. SNP and QTL associations can be enhanced using genome editing technology. Examples of successful applications of SNPs in aquaculture of fish, crustacean and mollusk species, representing most geographic areas, and ecological risks assessment are reviewed

    Mantle transcriptome sequencing of Mytilus spp. and identification of putative biomineralization genes

    Get PDF
    In molluscs, the shell secreted by mantle tissue during the biomineralization process is the first barrier against predators and mechanical damage. Changing environmental conditions, such as ocean acidification, influence shell strength and thus protection of the soft body within. Mussels are marine bivalves with important commercial and ecological value worldwide. Despite this importance, the proteins involved in the biomineralization and pigmentation processes in Mytilus spp. remain unclear, as does taxonomy of Mytilus taxa, though there have been many molecular studies. To further understanding in these areas, this study aimed to characterize and compare mantle transcriptomes of four mussel taxa using next generation sequencing. Mussels representing four taxa, were collected from several localities and RNA from mantle tissue was extracted. RNA sequences obtained were assembled, annotated and potential molecular markers, including simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were identified. Candidate contigs putatively related to biomineralization and pigmentation processes were then selected and several transcripts were chosen for phylogenetic analyses from the Bivalvia class. Transcriptome comparisons between Mytilus taxa, including gene ontology (GO) enrichment analysis and orthologues identification were performed. Of assembled contigs, 46.57%, 37.28% and 17.53% were annotated using NCBI NR, GO and Kyoto Encyclopedia of Genes and Genomes databases, respectively. Potential SSRs (483) and SNPs (1,497) were identified. Results presented a total of 1,292 contigs putatively involved in biomineralization and melanogenesis. Phylogenetic analyses of Îą-carbonic anhydrase, chitinase and tyrosinase revealed complex evolutionary history and diversity of these genes, which may be a result of duplication events or adaptation to different environments in mussels and other bivalves. Enrichment analyses revealed GO terms associated with pH and thermal response in Mytilus edulis from the North Sea and M. galloprovincialis from the Mediterranean Sea. The phylogenetic analysis within the genus Mytilus revealed M. californianus and M. coruscus to be genetically more distant from the other taxa: M. trossulus, M. edulis, M. chilensis and M. galloprovincialis. This work represents the first mantle transcriptome comparison between Mytilus taxa and provides contigs putatively involved in biomineralization

    Adaptation to salinity in Atlantic cod from different regions of the Baltic Sea

    Get PDF
    Highlights: • The stress response to salinity in subpopulations of the Baltic cod was examined. • Two different profiles of response to salinity were observed. • Changes in response profiles may be a functional adaptation to variable salinity. • Adaptation protects cod against stress during vertical and long-distance migrations. • Salinity is a barrier maintaining the genetic and physiological separations of cod. Abstract: Atlantic cod (Gadus morhua) occur in marine water of different salinities: from oceanic waters at salinity of 35 to Baltic Sea waters where the lowest level of salinity reaches 5–6. The stress response to different salinities in the eastern and western Baltic cod populations was examined. Two genes of Na +, K + -ATPase 1a (atp1a) and heat shock protein 70 (hsp70) expression, plasma cortisol and osmolality were used as markers of osmotic stress to characterize the reaction profiles of two populations of G. morhua from the western and eastern parts of the Baltic Sea. Atlantic cod were sampled in November 2012 from western Kiel Bight (KIEL, salinity of 18) and eastern Gdańsk Bay (GDA, salinity of 8). Live fish were transported to the Marine Station of the University of Gdańsk in Hel and were settled in tanks (3500 L). Cod were kept at 10 °C in recirculated water, which simulated the natural salinities of the geographic source region of the fish. Results showed that in the reduced and elevated salinity water of the KIEL group, we observed no change in expression of atp1a and slightly increased expression of hsp70. In the GDA group, there were no significant changes of hsp70 expression but the level of atp1a was significantly increased in both salinities. In both groups, concentration of cortisol increased after exposure to elevated salinity, while in fish exposed to reduced salinity, a significantly higher concentration of cortisol was observed after 72 h. The high expression of atp1a that observed in the eastern group (GDA) supports the thesis of a genetic background to the adaptation to variable salinity. This adaptation may protect this species against an osmotic stress caused by daily vertical migrations and long-distance migration to spawning areas. At the same life-time, salinity is a barrier maintaining the genetic and physiological separations between G. morhua stocks and affecting the structure of this fish subpopulation in the Baltic Sea

    SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus morhua) from diverse environments in the Baltic Sea

    Get PDF
    Atlantic cod (Gadus morhua) is one of the most important fish species in northern Europe for several reasons including its predator status in marine ecosystems, its historical role in fisheries, its potential in aquaculture and its strong public profile. However, due to over-exploitation in the North Atlantic and changes in the ecosystem, many cod populations have been reduced in size and genetic diversity. Cod populations in the Baltic Proper, Kattegat and North Sea have been analyzed using a species specific single nucleotide polymorphism (SNP) array. Using a subset of 8,706 SNPs, moderate genetic differences were found between subdivisions in three traditionally delineated cod management stocks: Kattegat, western and eastern Baltic. However, an FST measure of population differentiation based on allele frequencies from 588 outlier loci for 2 population groups, one including 5 western and the other 4 eastern Baltic populations, indicated high genetic differentiation. In this paper, differentiation has been demonstrated not only between, but also within western and eastern Baltic cod stocks for the first time, with salinity appearing to be the most important environmental factor influencing the maintenance of cod population divergence between the western and eastern Baltic Sea

    Chapter 3 PHYLOGEOGRAPHY OF SOUTHERN HEMISPHERE BLUE MUSSELS OF THE GENUS MYTILUS: EVOLUTION, BIOSECURITY, AQUACULTURE AND FOOD LABELLING

    Get PDF
    oceanography, climate change, reefs, marine science, marine conservation, marine researc

    A marine biodiversity observation network for genetic monitoring of hard-bottom communities (ARMS-MBON)

    Get PDF
    Marine hard-bottom communities are undergoing severe change under the influence of multiple drivers, notably climate change, extraction of natural resources, pollution and eutrophication, habitat degradation, and invasive species. Monitoring marine biodiversity in such habitats is, however, challenging as it typically involves expensive, non-standardized, and often destructive sampling methods that limit its scalability. Differences in monitoring approaches furthermore hinders inter-comparison among monitoring programs. Here, we announce a Marine Biodiversity Observation Network (MBON) consisting of Autonomous Reef Monitoring Structures (ARMS) with the aim to assess the status and changes in benthic fauna with genomic-based methods, notably DNA metabarcoding, in combination with image-based identifications. This article presents the results of a 30-month pilot phase in which we established an operational and geographically expansive ARMS-MBON. The network currently consists of 20 observatories distributed across European coastal waters and the polar regions, in which 134 ARMS have been deployed to date. Sampling takes place annually, either as short-term deployments during the summer or as long-term deployments starting in spring. The pilot phase was used to establish a common set of standards for field sampling, genetic analysis, data management, and legal compliance, which are presented here. We also tested the potential of ARMS for combining genetic and image-based identification methods in comparative studies of benthic diversity, as well as for detecting non-indigenous species. Results show that ARMS are suitable for monitoring hard-bottom environments as they provide genetic data that can be continuously enriched, re-analyzed, and integrated with conventional data to document benthic community composition and detect non-indigenous species. Finally, we provide guidelines to expand the network and present a sustainability plan as part of the European Marine Biological Resource Centre (www.embrc.eu).Peer reviewe

    Single nucleotide polymorphism markers with applications in aquaculture and assessment of its impact on natural populations

    Get PDF
    An increase in aquatic animal production can be achieved by extending aquaculture areas geographically, utilizing new species for culture, and using new technologies. Among new technologies useful for the increase of aquaculture production is the application of genetics and genomics. New molecular tools that benefit aquaculture have been developed. There has been a large number of experimental and review papers published concerning molecular markers and the range of their applications, including aquaculture and food product analyses. Analysis of single nucleotide polymorphisms (SNPs) has emerged as genotyping technology with wide and significant applications in aquaculture. SNPs can be used for construction of genetic linkage maps, finding quantitative trait loci (QTL) for useful traits like growth, body weight, grilsing, thermal and low oxygen tolerance, resistance to stress and diseases, mapping sex determination loci and identification of progeny in selection and chromosome manipulation experiments, assessment of genomic selectionand marker assisted selection in aquaculture. Genome-wide association studies (GWAS) facilitate the finding associations between SNPs and a trait in related or unrelated specimens. However, many traits are complex and can be controlled by number of QTL. Genotyping by genome reduction complexity sequencing emerged as an efficient and applicable technology in genomic selection. Identification of genes, sequences and nucleotides (substitutions) directly influencing phenotypic variations opens the possibility of marker-assisted selection for desirable characters in culture. SNP and QTL associations can be enhanced using genome editing technology. Examples of successful applications of SNPs in aquaculture of fish, crustacean and mollusk species, representing most geographic areas, and ecological risks assessment are reviewed

    Diverse Transcriptome Responses to Salinity Change in Atlantic Cod Subpopulations

    No full text
    Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes
    • …
    corecore