334 research outputs found
Pathways to a Trusted Electronic Voting System
In 2002, Congress passed the Help America Vote Act (HAVA) [1], largely in response to voting irregularities in the 2000 presidential election in Florida. Congress intended that HAVA resolve the lingering public confidence issues arising from inconsistent local election administration procedures, punch card voting machines, and voter registration. With HAVA, Congress authorized payments to the states to implement significant reforms of the voting system. However, the use of electronic voting machines to meet HAVA requirements threatens to damage public confidence in the voting system.
Several reports have been published that note security flaws in voting systems in use all over the country [2]. California sued a manufacturer claiming that the company had
misrepresented the security of its voting machines and falsified certification information [3]. In Ohio, a battleground state, recount irregularities also resulted in a lawsuit [4]. The public outcry and enormous media attention on these problems prompted Congress's Government Accountability Office (GAO) to launch an investigation [5]
BaYaka education: From the forest to the ORA (Observer, RĂ©flechir, Agir) classroom
Schooling is part of a global effort to help Indigenous peoples adapt to their changing social and ecological worlds and assert their human rights. There is ongoing discussion among anthropologists and educational researchers as to whether schooling meets these goals. Here, we examine the harms and benefits of ORA (Observer, Réflechir, Agir), a school system developed to educate BaYaka children from the northern Republic of the Congo. Many BaYaka have become more sedentary in recent years, spend more time working for their farmer neighbours or in towns, and have lost control of their traditional forest areas due to logging. ORA aims to provide a pre-schooling structure free from discrimination to 1) encourage the retention of Indigenous traditions, 2) reduce vulnerability and marginalisation of Indigenous populations, and 3) integrate children into the national public schooling system. Here, we contrast BaYaka pedagogy, social relationships, health education, experiences of discrimination, foraging activities, and cultural and spiritual beliefs with ORA. We argue that ORA’s curriculum structure and the cultural values transmitted in the classroom are at odds with BaYaka children’s forest learning and lifeways. Especially, while ORA explicitly seeks to provide BaYaka children with educational experiences free from discrimination from their farmer neighbours, a lack of BaYaka teachers and mother-tongue instruction may in fact disempower and disenfranchise BaYaka students. We end by discussing alternative approaches to education that can benefit BaYaka children, and outline areas for future research. A short ethnographic film on ORA curriculum and classroom life by Romain Duda is available at https://www.youtube.com/watch?v=aB8VH0txKZM
L’éducation des BaYaka: De la forêt aux écoles ORA (Observer, Réflechir, Agir)
La scolarisation fait partie d’un effort global visant à aider les peuples autochtones à s’adapter aux changements rapides de leur monde social et écologique et à affirmer leurs droits. La question de savoir si la scolarisation répond à ces objectifs fait l’objet d’un débat permanent parmi les anthropologues et les chercheurs en sciences de l’éducation. Nous examinons dans cet article les avantages et les inconvénients de la pédagogie ORA (Observer, Réflechir, Agir), un système scolaire développé pour éduquer les enfants BaYaka du nord de la République du Congo. Nombreux sont les BaYaka qui dans ces dernières années sont devenus plus sédentaires, passant plus de temps à travailler pour leurs voisins agriculteurs ou dans les villes, et ayant perdu le contrôle de leurs territoires forestiers en raison de l’exploitation forestière. Le système ORA vise à fournir une structure préscolaire exempte de discrimination afin (1) d’encourager le maintien des traditions autochtones, (2) de réduire la vulnérabilité et la marginalisation des populations autochtones et (3) de faciliter l’intégration des enfants dans le système scolaire public national. Dans ce contexte, nous comparons la pédagogie traditionnelle des BaYaka, les relations sociales, l’éducation à la santé, les expériences de discrimination, les activités de subsistance et les pratiques culturelles et rituelles avec ce qui est transmis dans les écoles ORA. Nous soutenons que la structure du programme scolaire ORA et les valeurs transmises en classe sont en contradiction avec l’apprentissage en forêt et le mode de vie des enfants baYaka. En particulier, alors que le système ORA cherche explicitement à offrir aux enfants baYaka des expériences éducatives exemptes de discrimination de la part de leurs voisins agriculteurs, le manque d’enseignants baYaka et d’enseignement en langue maternelle peut en fait les priver de leur autonomie et de leurs droits. Nous terminons l’article en discutant des approches éducatives alternatives qui peuvent bénéficier aux enfants baYaka, et en soulignant les domaines de recherche future. [Un court film ethnographique sur le programme ORA et la vie en classe, réalisé par Romain Duda, est disponible sur https://www.youtube.com/watch?v=aB8VH0txKZM]
Brain correlates of apathy in Kleine Levin syndrome: a mean apparent propagator study
International audienceSynopsis Kleine-Levin syndrome (KLS) is a rare neurological disorder characterized by episodes of severe hypersomnia, apathy, cognitive impairment, derealization and behavioral disturbances. Between episodes, patients have normal sleep, mood and behavior. Apathy is a prominent clinical feature of KLS but its pathophysiology is not known. Here we used mean apparent propagator to investigate white matter changes in KLS and correlated diffusion changes with apathy scores. Results showed that the corpus callosum was involved in KLS during episodes and mean RTAP measures in the corpus callosum correlated with apathy scores. Results were in accordance with known motivation-based circuits involving the orbitomedial frontal cortex. Purpose Kleine-Levin syndrome (KLS) is a rare neurological disorder that mainly affects adolescents. KLS is characterized by relapsing-remitting episodes of severe hypersomnia, apathy, cognitive impairment, derealization and behavioral disturbances. Between episodes, patients have normal sleep, mood and behavior [1]. Each episode is of brief duration varying from a week to 1-2 months. No definite cause has been identified [1]. Anatomical MRI scan is normal, but brain scintigraphy can be abnormal during and between episodes [2]. Apathy is a prominent clinical feature of KLS [3] but its pathophysiology in the disease remains to be established. The mechanisms responsible for apathy may involve several circuits connecting the frontal lobes to the basal ganglia [4]. Here, we performed TBSS analyses on the return-to-the-axis probability (RTAP) measures that may be linked to apparent axonal diameter and inflammation [5] to analyze the integrity of white matter (WM) microstructure of healthy volunteers (HV) compared to symptomatic (KLS-S) and asymptomatic (KLS-AS) patients. Methods We prospectively included 20 KLS-AS (mean age: 22.2 ± 8.9 years, 9 males) and 20 HV age and sex-matched one by one. Twelve of these 20 patients were also scanned during episodes (KLS-S). Apathy was assessed using the Starkstein Apathy score [6]. Diffusion-weighted images were acquired using a Siemens Verio 3T with a 12-channel head coil (GRAPPA=2; TR/TE=7.7s/92ms; voxel size: 2.5mm isotropic; 64, 32 and 8 gradient directions for b-values of 1800, 700, and 300 s/mm² respectively) and 8 images without diffusion weighting were also acquired. We preprocessed the images using FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and included correction for susceptibility (topup) and for eddy current distortions (eddycor) and creation of a binary mask of the brain (bet). Then, we generated RTAP maps of all subjects [7]. Voxelwise statistical analyses were carried out using TBSS, part of the FSL comparing RTAP maps of HV versus KLS-AS, HV versus KLS-S and KLS-AS versus KLS-S (paired t-test). Finally, in the TBSS-based ROI, we computed correlations between clinical scores (disease duration and apathy scores) and mean RTAP measures in this ROI and performed tractography on one healthy subject to determine its projection fibers. Results were considered significant at p<0.05, fully corrected for multiple comparisons across space. Results There were no significant differences in RTAP between HV and KLS-AS. In KLS-S compared to KLS-AS, RTAP increased in the corpus callosum (CC). There was a correlation between apathy scores and mean RTAP in the CC of KLS-S (p=0.03, r=0.61) (see Figure 2). There were no other correlations with clinical scores in KLS-AS as well as in KLS-S. Using the TBSS-ROI as a seed for tractography, fibers passing through the CC with abnormal RTAP measures projected to medial orbitofrontal cortex (see Figure 3). Discussion and conclusion The results highlight the presence of structural changes correlated to the apathy score in the anterior portion of the CC during episodes, a region where fibers project onto the medial orbitofrontal cortex. As, these prefrontal regions are involved in motivation processes [4], this suggests that apathy in KLS could result from difficulties to provide the affective/motivational value of a given behavioral context
Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae
HIV-1 sexual transmission occurs mainly via mucosal semen exposures. In the female reproductive tract (FRT), seminal plasma (SP) induces physiological modifications, including inflammation. An effective HIV-1 vaccine should elicit mucosal immunity, however, modifications of vaccine responses by the local environment remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized the impact of HIV-1+ SP intravaginal exposure on the local immune responses of non-human primates. Multiple HIV-1+ SP exposures did not impact the anti-MVA antibody responses. However, SP exposures revealed an anti-MVA responses mediated by CD4+ T cells, which was not observed in the control group. Furthermore, the frequency and the quality of specific anti-MVA CD8+ T cell responses increased in the FRT exposed to SP. Multi-parameter approaches clearly identified the cervix as the most impacted compartment in the FRT. SP exposures induced a local cell recruitment of antigen presenting cells, especially CD11c+ cells, and CD8+ T cell recruitment in the FRT draining lymph nodes. CD11c+ cell recruitment was associated with upregulation of inflammation-related gene expression after SP exposures in the cervix. We thus highlight the fact that physiological conditions, such as SP exposures, should be taken into consideration to test and to improve vaccine efficacy against HIV-1 and other sexually transmitted infections
Epinephrine and short-term survival in cardiogenic shock : an individual data meta-analysis of 2583 patients
Correction Volume: 44 Issue: 11 Pages: 2022-2023 DOI: 10.1007/s00134-018-5372-9Catecholamines have been the mainstay of pharmacological treatment of cardiogenic shock (CS). Recently, use of epinephrine has been associated with detrimental outcomes. In the present study we aimed to evaluate the association between epinephrine use and short-term mortality in all-cause CS patients. We performed a meta-analysis of individual data with prespecified inclusion criteria: (1) patients in non-surgical CS treated with inotropes and/or vasopressors and (2) at least 15% of patients treated with epinephrine administrated alone or in association with other inotropes/vasopressors. The primary outcome was short-term mortality. Fourteen published cohorts and two unpublished data sets were included. We studied 2583 patients. Across all cohorts of patients, the incidence of epinephrine use was 37% (17-76%) and short-term mortality rate was 49% (21-69%). A positive correlation was found between percentages of epinephrine use and short-term mortality in the CS cohort. The risk of death was higher in epinephrine-treated CS patients (OR [CI] = 3.3 [2.8-3.9]) compared to patients treated with other drug regimens. Adjusted mortality risk remained striking in epinephrine-treated patients (n = 1227) (adjusted OR = 4.7 [3.4-6.4]). After propensity score matching, two sets of 338 matched patients were identified and epinephrine use remained associated with a strong detrimental impact on short-term mortality (OR = 4.2 [3.0-6.0]). In this very large cohort, epinephrine use for hemodynamic management of CS patients is associated with a threefold increase of risk of death.Peer reviewe
Interleukin-6 receptor blockade in treatment-refractory MOG-IgG–associated disease and neuromyelitis optica spectrum disorders
BACKGROUND AND OBJECTIVES: To evaluate the long-term safety and efficacy of tocilizumab (TCZ), a humanized anti–interleukin-6 receptor antibody in myelin oligodendrocyte glycoprotein–IgG–associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD). METHODS: Annualized relapse rate (ARR), Expanded Disability Status Scale score, MRI, autoantibody titers, pain, and adverse events were retrospectively evaluated in 57 patients with MOGAD (n = 14), aquaporin-4 (AQP4)-IgG seropositive (n = 36), and seronegative NMOSD (n = 7; 12%), switched to TCZ from previous immunotherapies, particularly rituximab. RESULTS: Patients received TCZ for 23.8 months (median; interquartile range 13.0–51.1 months), with an IV dose of 8.0 mg/kg (median; range 6–12 mg/kg) every 31.6 days (mean; range 26–44 days). For MOGAD, the median ARR decreased from 1.75 (range 0.5–5) to 0 (range 0–0.9; p = 0.0011) under TCZ. A similar effect was seen for AQP4-IgG+ (ARR reduction from 1.5 [range 0–5] to 0 [range 0–4.2]; p < 0.001) and for seronegative NMOSD (from 3.0 [range 1.0–3.0] to 0.2 [range 0–2.0]; p = 0.031). During TCZ, 60% of all patients were relapse free (79% for MOGAD, 56% for AQP4-IgG+, and 43% for seronegative NMOSD). Disability follow-up indicated stabilization. MRI inflammatory activity decreased in MOGAD (p = 0.04; for the brain) and in AQP4-IgG+ NMOSD (p < 0.001; for the spinal cord). Chronic pain was unchanged. Regarding only patients treated with TCZ for at least 12 months (n = 44), ARR reductions were confirmed, including the subgroups of MOGAD (n = 11) and AQP4-IgG+ patients (n = 28). Similarly, in the group of patients treated with TCZ for at least 12 months, 59% of them were relapse free, with 73% for MOGAD, 57% for AQP4-IgG+, and 40% for patients with seronegative NMOSD. No severe or unexpected safety signals were observed. Add-on therapy showed no advantage compared with TCZ monotherapy. DISCUSSION: This study provides Class III evidence that long-term TCZ therapy is safe and reduces relapse probability in MOGAD and AQP4-IgG+ NMOSD
Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children
Funding Information: The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364 and R21AI160576), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Yale High-Performance Computing Center (S10OD018521), the Fisher Center for Alzheimer's Research Foundation, the Meyer Foundation, the JBP Foundation, the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the ANR GenMISC (ANR-21-COVR-039), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003) and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the ANR-RHU program (ANR-21-RHUS-08), the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the ANR-RHU Program ANR-21-RHUS-08 (COVIFERON), the Square Foundation, Grandir - Fonds de solidaritĂ© pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), and Paris CitĂ© University. We acknowledge support from the National Institute of Allergy and Infectious Diseases (NIAID) of the NIH under award R01AI104887 to R.H.S. and S.R.W. The Laboratory of Human Evolutionary Genetics (Institut Pasteur) is supported by the Institut Pasteur, the Collège de France, the French Government's Investissement d'Avenir program, Laboratoires d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-IBEID) and "Milieu IntĂ©rieur" (ANR-10-LABX-69-01), the Fondation de France (no. 00106080), the FRM (Equipe FRM DEQ20180339214 team), and the ANR COVID-19-POPCELL (ANR-21-CO14-0003-01). A. Puj. is supported by ACCI20-759 CIBERER, EasiGenomics H2020 MaratĂł TV3 COVID 2021-31-33, the HORIZON-HLTH-2021-ID: 101057100 (UNDINE), the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342), and the CERCA Program/Generalitat de Catalunya. The Canarian Health System sequencing hub was funded by the Instituto de Salud Carlos III (COV20-01333 and COV20-01334), the Spanish Ministry of Science and Innovation (RTC-2017-6471-1; AEI/FEDER, UE), FundaciĂłn MAPFRE Guanarteme (OA21/131), and Cabildo Insular de Tenerife (CGIEU0000219140 and "Apuestas cientĂficas del ITER para colaborar en la lucha contra la COVID-19"). The CoV-Contact Cohort was funded by the French Ministry of Health and the European Commission (RECOVER project). Our studies are also funded by the Ministry of Health of the Czech Republic Conceptual Development of Research Organization (FNBr, 65269705) and ANID COVID0999 funding in Chile. G. Novelli and A. Novelli are supported by Regione Lazio (Research Group Projects 2020) No. A0375-2020-36663, GecoBiomark. A.M.P., M.L.D., and J.P.-T. are supported by the Inmungen-CoV2 project of CSIC. This work was supported in part by the Intramural Research Program of the NIAID, NIH. The research work of A.M.P, M.L.D., and J.P.-T. was funded by the European Commission-NextGenerationEU (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global). I.M. is a senior clinical investigator at FWO Vlaanderen supported by a VIB GC PID grant, by FWO grants G0B5120N (DADA2) and G0E8420N, and by the Jeffrey Modell Foundation. I.M. holds an ERC-StG MORE2ADA2 grant and is also supported by ERN-RITA. A.Y. is supported by fellowships from the European Academy of Dermatology and Venereology and the Swiss National Science Foundation and by an Early Career Award from the Thrasher Research Fund. Y.-H.C. is supported by an A*STAR International Fellowship (AIF). M.O. was supported by the David Rockefeller Graduate Program, the New York Hideyo Noguchi Memorial Society (HNMS), the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the National Cancer Institute (NCI) F99 Award (F99CA274708). A.A.A. was supported by Ministerio de Ciencia TecnologĂa e InnovaciĂłn MINCIENCIAS, Colombia (111584467551/CT 415-2020). D.L. is supported by a fellowship from the FRM for medical residents and fellows. E.H. received funding from the Bank of Montreal Chair of Pediatric Immunology, Foundation of CHU Sainte-Justine, CIHR grants PCC-466901 and MM1-181123, and a Canadian Pediatric Society IMPACT study. Q.P.-H. received funding from the European Union's Horizon 2020 research and innovation program (ATAC, 101003650), the Swedish Research Council, and the Knut and Alice Wallenberg Foundation. Work in the Laboratory of Virology and Infectious Disease was supported by NIH grants P01AI138398-S1, 2U19AI111825, R01AI091707-10S1, and R01AI161444; a George Mason University Fast Grant; the G. Harold and Leila Y. Mathers Charitable Foundation; the Meyer Foundation; and the Bawd Foundation. R.P.L. is on the board of directors of both Roche and the Roche subsidiary Genentech. J.L.P. was supported by a Francois Wallace Monahan Postdoctoral Fellowship at the Rockefeller University and by a European Molecular Biology Organization Long-Term Fellowship (ALTF 380-2018). Publisher Copyright: © 2023 American Association for the Advancement of Science. All rights reserved.Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.publishersversionpublishe
The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis
Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON
- …