66 research outputs found

    Information-sharing nationwide network of cybersecurity partnerships

    Get PDF
    Het eindrapport doet aanbevelingen voor de doorontwikkeling van het Landelijk Dekkend Stelsel (LDS) van cybersecurity samenwerkingsverbande

    Information-sharing nationwide network of cybersecurity partnerships

    Get PDF

    Neurocitoma central: relato de dois casos

    Get PDF
    Neurocitoma central é um tumor neuroectodérmico raro, geralmente localizado nos ventrículos laterais. Uma mulher de 26 anos e um homem de 33 anos apresentaram-se com hipertensão intracraniana. Exames de imagem revelaram tumor intraventricular heterogêneo, que impregnava por contraste, ocupando os ventrículos laterais e causando hidrocefalia. A mulher faleceu no pós-operatório e o homem está livre de recidiva após três anos. Ambos os tumores eram sólidos, com células arredondadas, lembrando oligodendroglia, positivas para sinaptofisina, cromogranina e NSE e algumas para GFAP, vimentina e proteína S-100. Microscopia eletrônica mostrou neurópilo entre os corpos celulares, mas sinapses eram raras63410841089Central neurocytomas are rare neuroectodermal tumors believed to arise from the subependymal matrix of the lateral ventricles. Case reports: A 26-year-old woman and a 33-year-old man each had a large, heterogeneous, contrast enhancing mass in the lateral ventricles at the foramen of Monro causing bilateral hydrocephalus. The woman died after surgery, but the man is asymptomatic after three years. Histopathology: Both tumors were composed of isomorphic rounded cells positive for synaptophysin, chromogranin and NSE, while some reacted for GFAP, vimentin and S-100 protein. Electron microscopy revealed neuropil-like tissue between cells, but synapses were rar

    Exploration of an innovative ranging method for bi-static radar, applied in LEO Space Debris surveying and tracking

    Get PDF
    Space Situational Awareness (SSA) is referred as one of the capacitive areas of strategic interest to be developed/completed in the future in the short and medium term, for any nation with the target of the access to the space. One of the fundamental components is the Space Surveillance and Tracking (SST) program, considered as the capability to build a spatial mapping of the objects in orbit, their classification and the exact identification of their orbital characteristics. For this reason, radar measurements are relevant, in particular to observe objects in Low Earth Orbit. The Italian National Institute of Astrophysics together with Vitrociset company and Politecnico di Milano, studied and developed a new and innovative method for the range measure applied to bi-static radars to support the European Union Space Surveillance and Tracking (EUSST) program. Several tests have been carried out using the BIRALES and BIRALET sensors for survey and tracking observations respectively. Finally, the results obtained from observations have been compared with the real positions of the targets in order to validate the system. The ranging method relies on the synchronization of the transmitting and receiving antennas and on the correlation of the echo received from the scattering of the orbiting object. To do that, the transmitting antenna emits simultaneously two different signals: a Chirp signal for range measurement and a second “Continuous Wave” (CW) for Doppler shift measurement and object track reconstruction. Overall, we simultaneously obtain time profiles for range, angular position (azimuth and elevation), and Doppler during the passage of the objects inside the sensor Field of View. By virtue of the above plethora of measurements, this method guarantees also the possibility to produce an Initial Orbital Determination (IOD) for unknown objects

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr
    corecore