54 research outputs found

    Comparison of musculoskeletal networks of the primate forelimb

    Get PDF
    Anatomical network analysis is a framework for quantitatively characterizing the topological organization of anatomical structures, thus providing a way to compare structural integration and modularity among species. Here we apply this approach to study the macroevolution of the forelimb in primates, a structure whose proportions and functions vary widely within this group. We analyzed musculoskeletal network models in 22 genera, including members of all major extant primate groups and three outgroup taxa, after an extensive literature survey and dissections. The modules of the proximal limb are largely similar among taxa, but those of the distal limb show substantial variation. Some network parameters are similar within phylogenetic groups (e.g., non-primates, strepsirrhines, New World monkeys, and hominoids). Reorganization of the modules in the hominoid hand compared to other primates may relate to functional changes such as coordination of individual digit movements, increased pronation/supination, and knuckle-walking. Surprisingly, humans are one of the few taxa we studied in which the thumb musculoskeletal structures do not form an independent anatomical module. This difference may be caused by the loss in humans of some intrinsic muscles associated with the digits or the acquisition of additional muscles that integrate the thumb more closely with surrounding structures

    First anatomical network analysis of fore- and hindlimb musculoskeletal modularity in bonobos, common chimpanzees, and humans

    Get PDF
    Studies of morphological integration and modularity, and of anatomical complexity in human evolution typically focus on skeletal tissues. Here we provide the first network analysis of the musculoskeletal anatomy of both the fore- and hindlimbs of the two species of chimpanzee and humans. Contra long-accepted ideas, network analysis reveals that the hindlimb displays a pattern opposite to that of the forelimb: Pan big toe is typically seen as more independently mobile, but humans are actually the ones that have a separate module exclusively related to its movements. Different fore- vs hindlimb patterns are also seen for anatomical network complexity (i.e., complexity in the arrangement of bones and muscles). For instance, the human hindlimb is as complex as that of chimpanzees but the human forelimb is less complex than in Pan. Importantly, in contrast to the analysis of morphological integration using morphometric approaches, network analyses do not support the prediction that forelimb and hindlimb are more dissimilar in species with functionally divergent limbs such as bipedal humans

    The hand of Homo naledi

    Get PDF
    A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph)

    Exercise and cognitive function: a hypothesis for the association of type II diabetes mellitus and Alzheimer's disease from an evolutionary perspective

    Get PDF
    The association of type II diabetes mellitus (DM2) with Alzheimer's disease (AD) has received considerable attention in recent years. In the present paper, a hypothesis for this association from an evolutionary perspective, with emphasis on the close interplay between exercise and cognitive function, will be advanced in order to provide a biological rationale for the notion that the fundamental metabolic features of DM2 act in the brain over a protracted time span to induce the neuropathological characteristics of Alzheimer's disease thereby producing cognitive impairment. It is hoped that this hypothesis puts the association of DM2 and AD on firm conceptual grounds from a biological perspective and offers directions for further research

    An assessment of orofacial clefts in Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clefts of the lip (CL), the palate (CP), or both (CLP) are the most common orofacial congenital malformations found among live births, accounting for 65% of all head and neck anomalies. The frequency and pattern of orofacial clefts in different parts of the world and among different human groups varies widely. Generally, populations of Asian or Native American origin have the highest prevalence, while Caucasian populations show intermediate prevalence and African populations the lowest. To date, little is known regarding the epidemiology and pattern of orofacial clefts in Tanzania.</p> <p>Methods</p> <p>A retrospective descriptive study was conducted at Bugando Medical Centre to identify all children with orofacial clefts that attended or were treated during a period of five years. Cleft lip and/or palate records were obtained from patient files in the Hospital's Departments of Surgery, Paediatrics and medical records. Age at presentation, sex, region of origin, type and laterality of the cleft were recorded. In addition, presence of associated congenital anomalies or syndromes was recorded.</p> <p>Results</p> <p>A total of 240 orofacial cleft cases were seen during this period. Isolated cleft lip was the most common cleft type followed closely by cleft lip and palate (CLP). This is a departure from the pattern of clefting reported for Caucasian and Asian populations, where CLP or isolated cleft palate is the most common type. The distribution of clefts by side showed a statistically significant preponderance of the left side (43.7%) (χ<sup>2 </sup>= 92.4, p < 0.001), followed by the right (28.8%) and bilateral sides (18.3%). Patients with isolated cleft palate presented at very early age (mean age 1.00 years, SE 0.56). Associated congenital anomalies were observed in 2.8% of all patients with orofacial clefts, and included neural tube defects, Talipes and persistent ductus arteriosus.</p> <p>Conclusions</p> <p>Unilateral orofacial clefts were significantly more common than bilateral clefts; with the left side being the most common affected side. Most of the other findings did not show marked differences with orofacial cleft distributions in other African populations.</p

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph )
    corecore