51 research outputs found

    Reentrant valence transition in EuO at high pressures: beyond the bond-valence model

    Full text link
    The pressure-dependent relation between Eu valence and lattice structure in model compound EuO is studied with synchrotron-based x-ray spectroscopic and diffraction techniques. Contrary to expectation, a 7% volume collapse at ≈\approx 45 GPa is accompanied by a reentrant Eu valence transition into a \emph{lower} valence state. In addition to highlighting the need for probing both structure and electronic states directly when valence information is sought in mixed-valent systems, the results also show that widely used bond-valence methods fail to quantitatively describe the complex electronic valence behavior of EuO under pressure.Comment: 5 pages, 4 figure

    Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    Get PDF
    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe

    The Demonstration of a Light Extinction Tomography System at the NASA Glenn Research Center's Icing Research Tunnel

    Get PDF
    A prototype light extinction tomography system has been developed for acquiring real-time in-situ icing cloud uniformity and density measurements in the NASA Glenn Research Center's Icing Research Tunnel (IRT). These measurements are currently obtained through periodic manual calibrations of the IRT. These calibrations are time consuming and assume that cloud uniformity and density does not greatly vary between the periodic calibrations. It is envisioned that the new light extinction tomography system will provide the means to make these measurements in-situ in real-time and minimize the need for these manual calibrations. This new system uses the principle of light extinction tomography to measure the spray density and distribution in the test section. The prototype system was installed and successfully demonstrated in the Icing Research Tunnel in early 2018. Data sets were acquired for several standard spray and simulated fault conditions to assess system capability and sensitivity. This paper will describe the prototype light extinction system, the theory behind it, and the results of the demonstration test that was conducted in the IRT

    The Demonstration of a Light Extinction Tomography System at the NASA Glenn Research Center's Icing Research Tunnel

    Get PDF
    A prototype light extinction tomography system has been developed for acquiring real-time in-situ icing cloud uniformity and density measurements in the NASA Glenn Research Center's Icing Research Tunnel (IRT). These measurements are currently obtained through periodic manual calibrations of the IRT. These calibrations are time consuming and assume that cloud uniformity and density does not greatly vary between the periodic calibrations. It is envisioned that the new light extinction tomography system will provide the means to make these measurements in-situ in real-time and minimize the need for these manual calibrations. This new system uses the principle of light extinction tomography to measure the spray density and distribution in the test section. The prototype system was installed and successfully demonstrated in the Icing Research Tunnel in early 2018. Data sets were acquired for several standard spray and simulated fault conditions to assess system capability and sensitivity. This paper will describe the prototype light extinction system, the theory behind it, and the results of the demonstration test that was conducted in the IRT

    Development of the secondary school in Highland Park, Topeka, Kansas

    No full text
    Call number: LD2668 .R4 1959 R73
    • …
    corecore