48 research outputs found
Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras
The volatile contents of olivineâhosted (Fo89â71) melt inclusion glasses in rapidly quenched mafic tephras
from volcanic front volcanoes of the Central American Volcanic Arc (CAVA) in Guatemala, Nicaragua, and
Costa Rica, were analyzed by secondary ion mass spectrometry (SIMS) in order to derive the minimum eruptive
output of CO2, along with H2O, Cl, and S. Details of the analytical method are provided that establish
melt inclusion CO2 analyses with the Cameca ims6f at the Helmholtz Centre Potsdam. The highest CO2 concentrations
(up to 1800 mg/g) are observed in Nicaraguan samples, while melt inclusions from Guatemala and
Costa Rica have CO2 contents between 50 and 500 mg/g. CO2 does not positively covary with sediment/slab
fluid tracers such as Ba/La, Ba/Th, or U/La. Instead, the highest CO2 concentrations occur in the inclusions
with the most depleted incompatible element compositions and low H2O, approaching the composition
of midâocean ridge basalts (MORBs), whereas the most H2Oârich inclusions are relatively CO2âpoor
(<800 mg/g). This suggests that CO2 degassing was more extensive in the melts with the highest slab contribution.
CO2/Nb ratios in the least degassed CAVA melt inclusions are similar to those of primitive MORBs.
These are interpreted here as recording a minimum CO2 output rate from the mantle wedge, which amounts to
2.8 Ă 104 g/s for the âŒ1100 km long CAVA. Previously published estimates from quiescent degassing and
numerical modeling, which also encompassed the slab contribution, are 3 times higher. This comparison
allows us to estimate the proportion of the total CO2 output derived from the mantle wedge
Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption
Volatile element concentrations measured in melt inclusions are a key tool used to understand magma migration and degassing, although their original values may be affected by different re-equilibration processes. Additionally, the inclusion-bearing crystals can have a wide range of origins and ages, further complicating the interpretation of magmatic processes. To clarify some of these issues, here we combined olivine diffusion chronometry and melt inclusion data from the 2008 eruption of Llaima volcano (Chile). We found that magma intrusion occurred about 4 years before the eruption at a minimum depth of approximately 8âkm. Magma migration and reaction became shallower with time, and about 6 months before the eruption magma reached 3â4âkm depth. This can be linked to reported seismicity and ash emissions. Although some ambiguities of interpretation still remain, crystal zoning and melt inclusion studies allow a more complete understanding of magma ascent, degassing, and volcano monitoring data.NRF (Natl Research Foundation, Sâpore)MOE (Min. of Education, Sâpore)Published versio
Eruption style at Kīlauea Volcano in Hawaiʻi linked to primary melt composition
Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust.
The composition of primary melts formed at greater depths is thought to have little influence on eruptive style. Primary melts
formed at ocean island basaltic volcanoes are probably geochemically diverse because they are often associated with melting
of a heterogeneous plume source in the mantle. This heterogeneous primary melt composition, and particularly the content
of volatile gases, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry
of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of K¯ılauea, Hawaiâi, over the past 600
years.We find that more explosive styles of eruption at K¯ılauea Volcano are associated statistically with more geochemically
enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary
nature, undergoing little interaction with the magma reservoir at the volcanoâs summit. We conclude that the eruption style
and magma-supply rate at K¯ılauea are fundamentally linked to the geochemistry of the primary melts formed deep below
the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle
source region
Settling-driven gravitational instabilities associated with volcanic clouds: new insights from experimental investigations
Downward propagating instabilities are often observed
at the bottom of volcanic plumes and clouds. These
instabilities generate fingers that enhance the sedimentation of
fine ash. Despite their potential influence on tephra dispersal
and deposition, their dynamics is not entirely understood,
undermining the accuracy of volcanic ash transport and dispersal
models. Here, we present new laboratory experiments
that investigate the effects of particle size, composition and
concentration on finger generation and dynamics. The experimental
set-up consists of a Plexiglas tank equipped with a
removable plastic sheet that separates two different layers.
The lower layer is a solution of water and sugar, initially
denser than the upper layer, which consists of water and particles.
Particles in the experiments include glass beads as well
as andesitic, rhyolitic and basaltic volcanic ash. During the
experiments, we removed the horizontal plastic sheet separating
the two fluids. Particles were illuminated with a laser and
filmed with a HD camera; particle image velocimetry (PIV) is
used to analyse finger dynamics. Results show that both the
number and the downward advance speed of fingers increase
with particle concentration in the upper layer, while finger
speed increases with particle size but is independent of particle
composition. An increase in particle concentration and turbulence
is estimated to take place inside the fingers, which could
promote aggregation in subaerial fallout events. Finally, finger
number, finger speed and particle concentration were observed
to decrease with time after the formation of fingers.
A similar pattern could occur in volcanic clouds when the
mass supply from the eruptive vent is reduced. Observed evolution
of the experiments through time also indicates that there
must be a threshold of fine ash concentration and mass eruption
rate below which fingers do not form; this is also confirmed
by field observations.Published395V. Dinamica dei processi eruttivi e post-eruttiviJCR Journa
Controls on explosive-effusive volcanic eruption styles
One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedbacks involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss, and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution
A tale of two magmas, Fuego, Guatemala
Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO 2 rich (up to ~1,500 ppm), they have low H 2O concentration (max 1.5 wt.%, compared to ~6 wt.% in 1974). These melt inclusions have a modified H 2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. ( 210Pb/ 226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ~30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch. © 2011 Springer-Verlag
A Murine Model for Enhancement of Streptococcus pneumoniae Pathogenicity Upon Viral Infection and Advanced Age
Streptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human co-infection. We built upon this model by first establishing pneumococcal nasopharyngeal colonization, then inoculating both the nasopharynx and lungs with IAV. In young (2 months) mice, co-infection triggered bacterial dispersal from the nasopharynx into the lungs, pulmonary inflammation, disease and mortality in a fraction of mice. In old mice (20-22 months), co-infection resulted in earlier and more severe disease. Aging was not associated with greater bacterial burdens but rather with more rapid pulmonary inflammation and damage. Both aging and IAV infection led to inefficient bacterial killing by neutrophils ex vivo Conversely, aging and pneumococcal colonization also blunted IFN-α production and increased pulmonary IAV burden. Thus, in this multistep model, IAV promotes pneumococcal pathogenicity by modifying bacterial behavior in the nasopharynx, diminishing neutrophil function, and enhancing bacterial growth in the lung, while pneumococci increase IAV burden likely by compromising a key antiviral response. Thus, this model provides a means to elucidate factors, such as age and co-infection, that promote the evolution of S. pneumoniae from asymptomatic colonizer to invasive pathogen, as well as to investigate consequences of this transition on antiviral defense