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Abstract  8 

 9 

Downward propagating instabilities are often observed at the bottom of volcanic plumes and clouds. 10 

These instabilities generate fingers that enhance the sedimentation of fine ash. Despite their 11 

potential influence on tephra dispersal and deposition, their dynamics is not entirely understood, 12 

undermining the accuracy of volcanic ash transport and dispersal models. Here, we present new 13 

laboratory experiments that investigate the effects of particle size, composition and concentration 14 

on finger generation and dynamics. The experimental set-up consists of a Plexiglas tank equipped 15 

with a removable plastic sheet that separates two different layers. The lower layer is a solution of 16 

water and sugar, initially denser than the upper layer, which consists of water and particles. 17 

Particles in the experiments include glass beads as well as andesitic, rhyolitic, and basaltic volcanic 18 

ash. During the experiments, we removed the horizontal plastic sheet separating the two fluids. 19 

Particles were illuminated with a laser and filmed with a HD camera; the Particle Image 20 

Velocimetry (PIV) is used to analyse finger dynamics. Results show that both the number and the 21 

downward advance speed of fingers increase with particle concentration in the upper layer, while 22 

finger speed increases with particle size but is independent of particle composition. An increase in 23 

particle concentration and turbulence is estimated to take place inside the fingers, which could 24 

promote aggregation in subaerial fallout events. Finally, finger number, finger speed and particle 25 

concentration were observed to decrease with time after the formation of fingers. A similar pattern 26 
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could occur in volcanic clouds when the mass supply from the eruptive vent is reduced. Observed 27 

evolution of the experiments through time also indicates that there must be a threshold of fine ash 28 

concentration and mass eruption rate below which fingers do not form; this is also confirmed by 29 

field observations. 30 

Key words: Tephra; Volcanic Plumes; Volcanic Ash; Laboratory Experiments; PIV Analysis; 31 

Particle Aggregation.  32 
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1. INTRODUCTION 34 

During explosive volcanic eruptions, a large number of volcanic particles is injected into the 35 

atmosphere with the potential of generating significant hazards to nearby communities and various 36 

economic sectors. While fine ash in distal area may produce long-term health risks and is extremely 37 

dangerous for aircraft jet engines due to the accumulation of melted glass particles and erosion of 38 

turbine blades, proximal fallout can cause collapse of buildings and damage to agriculture, 39 

vegetation, lifelines, road networks and critical infrastructures (e.g. Blong, 2000; Miller and 40 

Casadevall, 2000). The volcanic crisis of Eyafjallajökull volcano (2010, Iceland) and Cordón Caulle 41 

volcano (2011, Chile), represent the most recent examples of widespread economic disruption 42 

caused by volcanic ash (e.g. Alexander, 2013; Oxford, 2010; Elissondo et al., 2016; Sammons et al., 43 

2010; Wilson et al., 2013). Volcanic risk can be mitigated thanks to accurate forecasting of tephra 44 

dispersal that builds on a good understanding and description of volcanic plumes and cloud 45 

dynamics and sedimentation. There is a variety of volcanic ash dispersal models based on different 46 

assumptions and modelling strategies (see Folch et al. (2012) for a review). Sensitivity analyses 47 

have demonstrated that, when eruption source parameters are well constrained, eruptive phenomena 48 

such as particle dispersal and sedimentation can be reproduced with good accuracy (e.g. Costa et 49 

al., 2006; Scollo et al., 2010; Bonadonna et al., 2012). However, even after an accurate model 50 

calibration, differences between field data and model results can reach up to 150% (e.g. Scollo et 51 

al., 2008). Causes of these discrepancies include the fact that not all the physical processes of 52 

volcanic plumes and clouds are fully described. Among these processes, the generation and 53 

dynamics of fingers associated with settling-driven gravitational instabilities, also called convective 54 

instabilities, could play an important role (e.g. Carazzo and Jellinek, 2013; Durant, 2015; Manzella 55 

et al., 2015; Figure 1).  56 

In the presence of particle-laden fluids, such as volcanic plumes and clouds, gravitational 57 

instabilities are induced by particle settling across the density interface (Hoyal et al., 1999).  58 

Initially the configuration is gravitationally stable: the lighter particle laden fluid (e.g. volcanic 59 
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current) is emplaced above the denser one (e.g. atmospheric layer). Small variations in density at 60 

different points of the interface occur due to particle settling, generating instabilities. As a 61 

consequence, vertical gravity currents, called fingers, start to develop in the lower layer and lead to 62 

convective motion (Turner, 1979), which drives the vertical transport of particles in the lower layer 63 

(e.g. Carazzo and Jellinek, 2012; Hoyal et al., 1999; Manzella et al., 2015). The main condition for 64 

the formation of settling-driven gravitational instabilities is that the particle suspension behaves as a 65 

continuum and this happens if the finger downward velocity has to be greater than particle settling 66 

velocity (Hoyal et al., 1999). This condition (e.g. the particles to be coupled with the fluid and 67 

efficiently mixed) is satisfied, according to Carazzo and Jellinek (2012), when both the Stokes 68 
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 the particle density (kg m-3),  𝑑𝑝 the particle diameter (m), µ the dynamic viscosity (Pa s), 70 

V (m s-1) and L (m) the characteristic velocity and length for the flow, and g the acceleration due to 71 

gravity (m s-2).  72 

Gravitational instabilities have often been observed in many volcanic plumes and clouds, such as 73 

those associated with the eruption of Mount St. Helens 1980 (USA), Montserrat 1997 (West Indies), 74 

Eyafjallajökull 2010 (Iceland), Ruapehu 1996 (New Zealand) and Etna 2013 (Italy) (Bonadonna et 75 

al., 2002; Bonadonna et al., 2005a; Bonadonna et al. 2005b; Bonadonna et al., 2011; Durant et al., 76 

2009; Manzella et al., 2015; Schultz et al., 2006) (e.g. Figure 1). In recent decades, several authors 77 

have used laboratory experiments to study the effects of gravitational instabilities on tephra 78 

sedimentation. For example, Carey (1997) examined the settling behaviour of volcanic ash (20-180 79 

m diameter) onto a water surface based on an experimental apparatus. The experimental set-up 80 

consisted of a 1.5-m-high settling column positioned over a 30 cm x 30 cm x 70 cm glass tank filled 81 

with water. Particles fell at a constant rate at the top of the column, accumulated on the water 82 

surface and then descended into the tank where they were photographed. Carey (1997) observed 83 

that the formation of fingers is directly linked to the reduction of particle settling velocity at the air-84 
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water interface, which increases the concentration at the boundary layer. He also proved that the 85 

particle settling in the water column was accelerated by the formation of diffuse vertical gravity 86 

currents driven by gravitational instabilities that reduced the residence time of fine ash. Carazzo and 87 

Jellinek (2012) studied gravitational instabilities in volcanic plumes through both laboratory 88 

experiments and theoretical considerations. They found that finger formation reduced the residence 89 

time of fine ash into the gravitationally unstable particle boundary layer of volcanic clouds. 90 

Gravitational instabilities could therefore explain the unusual patterns of some tephra deposits (e.g. 91 

Bonadonna et al., 2002; Bonadonna et al., 2005) and/or the premature sedimentation of fine ash that 92 

are often explained by particle aggregation (e.g. Carey and Sigurdsson, 1982). 93 

Models of sedimentation associated with gravitation instabilities were developed by Hoyal et al. 94 

(1999), recently modified by Manzella et al. (2015). Their formulation builds on the mass balance 95 

equation between the incoming and outcoming flux at the density interface for two different 96 

conditions: an upper quiescent layer (i.e. no external forcing of the fluid motion) and an upper 97 

turbulent layer (i.e. external forcing of the fluid motion). Furthermore, Cardoso and Zarrebini 98 

(2001) analysed buoyant particle-laden flows both experimentally and theoretically. They found 99 

that the development of particle-rich fingers was related to unstable particle stratification and that 100 

both the concentration of particles at the source of the plume, as well as the size of the particles, had 101 

notable influence on the sedimentation pattern in the environment below the surface current. 102 

Recently, Manzella et al. (2015) analysed gravitational instabilities during the 2010 eruption of 103 

Eyjafjallajökull volcano (Iceland) that transported fine ash to the ground at a speed of ~1 m/s, 104 

various orders of magnitude faster than the predicted terminal fall velocities of the smallest 105 

observed particles. These results were confirmed by specific laboratory experiments using glass 106 

beads in a density-stratified aqueous solution. They also showed how particle aggregation was 107 

strongly linked with sedimentation driven by fingers. The relationship between particle aggregation 108 

and gravitational instabilities was also suggested by Carazzo and Jellinek (2012).  109 
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Particle Imaging Velocimetry (PIV) is a widely used technique in fluid dynamics. It enables 110 

measuring the velocity of a fluid through the tracking of several particles able to reflect the light of 111 

a laser sheet (e.g. Adrian, 1991; Adrian, 1995; Adrian, 2005; Grant, 1997; Raffel et al., 2007). In 112 

volcanology, the PIV technique has already been applied to characterize plume dynamics, to 113 

measure the flow velocity for various ranges of particle size, overpressure ratios and densities and 114 

to analyse the effect of collision kinetic energy and atmospheric water vapour in subsaturated 115 

condition on ash aggregation (e.g. Saffaraval et al., 2012, Telling and Dufek, 2012, Chojnicki et al., 116 

2014, Chojnicki et al., 2015a, Chojnicki et al., 2015b).  117 

In our experiments, particles generating fingers are embedded in the fluid and, thanks to their 118 

potential for reflecting laser light, are used as PIV trackers. Experiments are carried out and 119 

analysed by the PIV technique (Section 2) in order to investigate the influence of particle size, 120 

composition and concentration on the formation and dynamics of the fingers (Section 3). 121 

Experimental results are then discussed and compared with observations of fingers occurring during 122 

explosive volcanic eruptions (Section 4).  123 

 124 

2. METHODS 125 

2.1 Experimental setup 126 

Our experimental set-up is described in details by Manzella et al. (2015). The set-up comprises a 127 

Plexiglas tank of 30.3 cm x 50 cm x 7.5 cm (with x corresponding to the length (L), y to the height 128 

(H) and z to the width (W)) equipped with a removable sheet for the partition of two separate layers 129 

(Figure 2). The upper partition (H1 = 13.5 cm), which is filled with water and particles, is 130 

characterized by an initial lower density than the lower partition (H2 = 25.1 cm) that consists of a 131 

solution of water and sugar. The lower layer density was fixed with a value of 1008.4 kg/m3, while 132 

variations in the density in the upper layer depend on the concentration and on the different 133 

densities of particles and, in our experiments, range between 999.8 and 1001.5 kg/m3 (see Manzella 134 

et al. (2015) as GSA data repository for the formulation). The experiments are carried out under 135 
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isothermal conditions and the configuration is suitable to represent the state in which the plume and 136 

fingers are advected at wind speed and the dynamic conditions are similar to those in volcanic 137 

clouds (Manzella et al., 2015). The experiments entail removing the horizontal barrier that separates 138 

the two fluids, and then observing the instabilities formed at the boundary of the two layers 139 

propagating downward (Manzella et al., 2015). Similarly, we consider two different set-ups defined 140 

as unmixed and mixed conditions. During unmixed experiments, particles are fully suspended 141 

before the beginning of the experiment but they do not undergo additional external stirring once the 142 

experiment starts, while, during mixed experiments, particles are continuously mixed with a rotary 143 

stirrer that is stopped 1-2 seconds before the removal of the separation between the two layers (see 144 

also Figure DR4 of the repository material of Manzella et al. (2015)). The stirrer is set at a speed of 145 

30 rpm with a paddle of 6.9 cm (length) by 3.4 cm (diameter).  146 

Experiments were carried out to examine the fluid dynamics associated with finger formation 147 

using a PIV measuring system and image analysis. To this end, we recorded the experiments with a 148 

high speed/high definition camera while a 2 Watt Neodymium-doped YAG (Yttrium Aluminium 149 

Garnet) laser (RayPower 2000 by Dantec Dynamics), located at about 1 m from the frontal tank 150 

wall, generates a green light to illuminate the particles used as tracer for the PIV analysis (Figure 2). 151 

We were then able to measure the number and speed of fingers by image analysis and, therefore, to 152 

assess the effect of concentration, size and particle composition on their generation and dynamics.  153 

2.2 Experimental conditions  154 

Particles used in our experiments include 4 grain-size classes of Glass Beads (GB), i.e. with 155 

diameter < 32 µm, between 32-45 µm, between 45-63 µm, and between 63-90 µm as well as 6 156 

grain-size classes of Andesitic, Rhyolitic, and Basaltic Volcanic Ash (Andes-VA; Rhyol-VA; 157 

Basalt-VA, respectively), i.e. with diameter < 32 µm, 32-45 µm, 45-63 µm, 63-90 µm, 90-125 µm, 158 

and 125-180 µm (Table 1). An additional class was also considered, where we mixed all the 159 

particles with diameter <125 µm (called <125 µm in Table 1) to study the effect of using a widely 160 

polydisperse mixture. Populations of different particle size were obtained through mechanical 161 
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sieving at the University of Geneva and the above-mentioned grain-size classes have been named 162 

after the sieves used which follow the international standard classification ISO3310. Laser 163 

diffraction analyses carried out with the CILAS 1180 instrument on selected samples indicate a 164 

good sorting inside the considered ranges (Folk and Ward, 1957). 165 

For the andesitic composition, we used samples of volcanic ash erupted during the 2010 eruption 166 

of Eyjafjallajökull volcano (Iceland). This eruption produced a continuous volcanic plume up to 10 167 

km above sea level between 14 April and 21 May 2010 (Gudmundsson et al., 2012). Glass 168 

composition ranges from benmoreite to trachyte with a silica content between 56 and 68 wt% and a 169 

total alkali from 7.3 and 9.1wt% (Cioni et al., 2014). The ash considered in our experiments was 170 

sampled between 4 and 8 May 2010 (Bonadonna et al., 2011). For the rhyolitic composition, we 171 

used samples of volcanic ash erupted during the May 2008 eruption of Chaitén volcano (Chile) 172 

(Alfano et al., 2011; Alfano et al., 2012; Alfano et al., 2016). The bulk magma composition of the 173 

main phase of this eruption varies between 73.0 and 75.5 wt% of SiO2 (Alfano et al., 2011). Finally, 174 

for the basaltic composition, we used samples of volcanic ash from the 1992 eruption of Cerro 175 

Negro (Nicaragua) that lasted for about 21 days and was associated with a volcanic plume up to 176 

about 7 km a.s.l. (e.g. Connor and Connor, 2006; Connor et al, 1993). The silica content varies 177 

between 48.64 and 52.15 wt% (Roggensack et al., 1997).  The density of individual size classes is 178 

complex to determine; however, based on the detailed analysis of Eychenne and Le Pennec (2012), 179 

we can assume that the density of fine ash is close to their Dense Rock Equivalent (DRE) value. 180 

The mean DRE value (measured with a helium pycnometer) of Eyjafjallajökull, Chaitén and Cerro 181 

Negro ash is 2738 kg m−3 (Bonadonna et al. 2011), 2240 kg m−3 (Alfano et al. 2012) and 2988 kg 182 

m−3 (measured for this work), respectively. 183 

Three concentrations were considered to generate fingers: C1 = 3 g/l, C2 = 4 g/l, C3 = 5 g/l. The 184 

concentrations were chosen based on experimental constraints as reported in Manzella et al. (2015). 185 

In fact, both lower and higher concentrations are not detectable experimentally based on the grey 186 

scale measuring strategy. The particle volumetric concentration in the experiments is then in the 187 
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order of 10-9, which, together with their capacity to reflect the laser light, confirms that the particles 188 

used can be exploited as tracers in PIV analysis. This is also supported by the fact that they are 189 

coupled with the fluid since both their Stokes and Sedimentation numbers are < 1 (i.e. they are in 190 

the range of 10-4-10-1 and 0.5-1, respectively) for the grain-size and particle composition analysed in 191 

our experiments (Carazzo and Jellinek, 2012). A detailed list of experiments is reported in Table 1. 192 

In unmixed conditions, different tests were carried using GB with different concentrations 193 

(experiment 1-10), GB with different sizes (experiments 11-17), Andes-VA with different sizes 194 

(experiments 18-24) and Andes-VA with different concentrations (experiments 25-26). Experiments 195 

with mixed conditions were carried out only for GB and Andes-VA in the range between 45 and 63 196 

m (experiments 28-29) and for Andes-VA with diameter < 125 m (experiments 27 and 30). 197 

However, the experiment 27 did not provide a good PIV analysis and was not considered for further 198 

analysis. Experiments were finally carried out for Rhyol-VA and Basalt-VA with all the grain size 199 

classes considered (experiments 31-34) in unmixed conditions. Experiments with GB were repeated 200 

up to three times to verify the repeatability of the measurements (e.g. experiments 12-13, 14-15 and 201 

16-17), while experiments with volcanic ash were carried out only once because of the limited 202 

amount of material available. It is worth mentioning that GB particles are more visible than 203 

volcanic ash particles, reflecting the laser light more efficiently. Among volcanic particles, the 204 

Andes-VA ones reflect the laser light best and therefore, once the effect of the composition has 205 

been studied, these were preferred for tests with volcanic ash. 206 

2.3 Data analysis 207 

Images of 1624 x 1600 pixel sizes were taken at of 0.03 s time steps and each particle captured by 208 

the camera that scattered the laser light was used for the PIV analysis with the Dynamic Studio 209 

Software (DANTEC, http://www.cefd-imech.ac.vn/lab/3D_PIV/DynamicStudio%20Manual.pdf). 210 

PIV technique is based on the fact that the image intensity field at each instant corresponds to the 211 

position of the particles reflecting the laser light and it assumes that between two instants t and t + 212 

∆t, i.e. two consecutive exposures to the laser light, all particles inside a previously defined 213 



10 

 

interrogation window have moved together with the fluid with the same displacement vector, ∆X.  214 

This interrogation area (IA) should be small enough to respect this assumption but large enough to 215 

contain at least 10 particles reflecting the laser light to evaluate the intensity field. On the other 216 

hand, the particle volume fraction should be smaller than 10-4, so that they are easily visible and do 217 

not influence the fluid flow. For this reason, in order to find the most suitable interrogation window 218 

and thus increase the accuracy of the analysis, the Dynamic Studio Software uses an iterative 219 

process that reduces the size of the interrogation area progressively from 128x128 to 16x16 pixels. 220 

In this framework, using a spatially statistical cross-correlation function which relates the difference 221 

in image intensity between two instants, we are able to evaluate the displacement of the fluid and 222 

the velocity vector for each interrogation area (Raffel et al., 2007). In addition, the DANTEC 223 

software is also used to evaluate the finger speed (m/s) measuring the position of the finger front at 224 

different times, the divergence (s-1) and the vorticity (s-1) fields.  225 

As also described in the Dynamic Studio software manual, the divergence of a 3D vector 226 

velocity field 𝑈 is defined as: 227 

𝑑𝑖𝑣(𝑈̅) =
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
+

𝜕𝑊

𝜕𝑧
.     (1)  228 

For planar data gradients, as the one analysed with PIV, it reduces to: 229 

𝑑𝑖𝑣(𝑈𝑉̅̅ ̅̅ ) =
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
     (2) 230 

with x, y and z indicating the axis associated with the length, height, and width in Figure 2.  231 

Non-zero divergence values could indicate local changes in density and, therefore, local changes of 232 

particles concentration or, when the fluid is incompressible, a non-negligible variation of the 233 

velocity in the z direction.  234 

Vorticity is a vector quantity, which corresponds to the rotation of the fluids. For planar data 235 

gradient only the z-component of vorticity, 𝜔𝑧, can be calculated: 236 

𝜔𝑧 =
𝜕𝑉

𝜕𝑥
−

𝜕𝑈

𝜕𝑦
 .       (3) 237 
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According to Tritton (1988), turbulent flows are characterised by non-zero, fluctuating vorticity. 238 

Even if the studied gravitational instabilities cannot be considered two-dimensional because they 239 

have a component in the out of plane direction (z = W in Figure 2), this component is significantly 240 

smaller than the longitudinal (x = L in Figure 2) and vertical (y = H in Figure 2) dimensions of the 241 

tank, i.e. a few millimetres versus tens of centimetres. In addition, a single finger is mostly axi-242 

symmetrical with respect to the flow direction, so we can assume that what we observe in a single 243 

finger in the x-y plane would be similar to what we could observe in the y-z plane. As a result, we 244 

consider that the PIV two-dimensional analysis can globally capture the main flow dynamics 245 

involved in the gravitational instabilities. 246 

 247 

3. RESULTS 248 

Figure 3 shows selected images of the experiments using GB and Andes-VA particles between 32 249 

and 45 µm and between 63 and 90 µm with C1 as concentration and in unmixed condition 250 

(experiments 11, 15, 20 and 22 in Table 1). Fingers are clearly visible a few seconds (> 3s) after the 251 

sheet is removed and are of approximately the same size in each experiment. 252 

Our analysis shows that the descending fingers have an irregular shape during the formation 253 

stage, and descend with large caps at their tips (e.g. Figure 3). The number of fingers increases with 254 

particle concentration (Figure 4a), but does not depend on the particle size and composition (Figure 255 

4b). The mean wavelength, given by L/n where L is the length of the box (30.3 cm) and n is the 256 

number of fingers, ranges between 2.2 and 2.9 cm.  Finger speed has a poor dependence on the 257 

particle concentration in the range of concentration investigated here (Figure 4c) and increases with 258 

particle size (Figure 4d). The experimental error bars in Figures 4a and 4b was evaluated by the 259 

standard deviation obtained from the mean value of finger number in ten images taken 3 s after 260 

removing the sheet. The mean and standard deviation in Figures 4c and 4d are instead evaluated by 261 

the analysis of five fingers over the course of one whole experiment.  262 
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It is worth mentioning that particles greater than 125 µm did not generate fingers (experiment 18 263 

in Table 1). The number of fingers also depends on the experimental conditions of the upper layer. 264 

Figures 5a and 5b illustrate experiments with a “mixed” upper layer using GB and Andes-VA 265 

between 45 and 63 µm (experiments 28 and 29 in Table 1) showing a higher number of fingers (2-3 266 

fingers more for both cases) with respect to “unmixed” experiments. Finger speed, instead, is 267 

independent of initial mixing.  268 

We also analysed the evolution of finger dynamics with time. In general, the downward 269 

movement of fingers was not steady and we observed similar oscillations to those reported in 270 

Carazzo and Jellinek (2012). For the same class size, we found a general decrease of finger number 271 

with time mainly at the interface due to the decrease of the particle concentration in the upper layer. 272 

As an example, the experiment 11 in Table 1 (i.e. GB with size between 32-45 m) shows 11 and 8 273 

fingers, respectively, 5 and 30 s after the sheet was removed (Figures 6a and b). The speed of 274 

fingers is about 4.5 1.1 mm/s and 2.4  0.2 mm/s after about 7 and 20 s, respectively. This 275 

behaviour was similar for different class sizes (e.g. Figures 6c and 6d). Figure 7 shows the variation 276 

of the finger number with respect to time for GB between 45 and 63 m (experiment 3). At the 277 

beginning of the experiment, the number of fingers is 111 and after about 30 s the number of 278 

fingers remains almost constant (between 71 and 61). A power law fits the evolution with time 279 

well (R2=0.88; Figure 7). We found that the finger speed was 4.6  1.1, 3.0  1.0 and 2.4  1.3 280 

mm/s at 10 s, at 20 s and 30 s, respectively. The study of finger evolution with time was also carried 281 

out for Andes-VA particles (experiments 19, 29, and 30) and for volcanic ash with a wide range of 282 

size (< 125 m) showing similar trends. As an example, Figure 8 shows the experiment 24 in Table 283 

1 carried out with Andes-VA. At the beginning of the experiment (< 10 s), fingers contain particles 284 

with the widest size range. In fact, even though particle size cannot be quantitatively assessed with 285 

PIV, a qualitative assessment can be made based on backscattering because larger particles show a 286 

smaller backscattering of the laser light and are less visible in the images retrieved by the camera 287 
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than smaller particles. In agreement with our previous observations, this experiment also shows 288 

how both the number and speed of fingers decrease with time. In particular, we observe 12 and 11 289 

fingers after 5 and 10 s and 9 and 8 fingers after 15 sec and 20 s, respectively. The associated speed 290 

is 7.9  1.2, 6.1  1.0, 4.6  1.7 and 4.3  0.8 mm/s after 5, 10, 15 and 20 s, respectively.  291 

Finally, we investigated the divergence and vorticity fields for GB and Andes-VA with different 292 

particle size and, in general, we found that divergence was zero everywhere except at the interface 293 

and inside the fingers. Figure 9 shows how the highest variation of the relative values of divergence 294 

and vorticity are concentrated in the fingers, where we also notice an increase of the brightness 295 

coming from the laser reflection of the particles (Figure 9a). An increase in brightness is hence 296 

associated with an increasing number of reflecting particles. As aforementioned, a non-zero 297 

divergence for PIV planar data could be associated with a significant velocity component along the 298 

out of plane direction (width in Figure 2), which cannot be excluded considering the 3D nature of 299 

fingers. However, the occurrence of the highest variations in divergence, even if small, combined 300 

with an increase of brightness within the fingers (Figures 9a and 9b), could suggest a temporary and 301 

localized variation in particle concentration. By contrast, a fluctuation of vorticity values in the x-y 302 

plane can be associated with a turbulence motion regardless of the 3D nature of the fingers. We can 303 

then infer that gravitational instabilities could be likely associated with an increase of concentration 304 

and turbulence with respect to initial conditions. 305 

 306 

4. DISCUSSION  307 

Our experiments confirm previous findings that gravitational instabilities have a marked effect on 308 

the sedimentation of volcanic ash (e.g. Carazzo and Jellinek, 2012; Manzella et al., 2015) and the 309 

analysis of these instabilities provide new insights into the effect of particle concentration, size and 310 

composition and into the evolution of fingers with time. Based on the analysis of divergence and 311 

vorticity, the formation of gravitational instabilities also has implications on particle aggregation.  312 
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Results show how the number of fingers depends largely on particle concentration in the upper 313 

layer, as already concluded by Hoyal et al. (1999), while finger speed mostly depends on particle 314 

size. Even though basaltic particles were more difficult to analyze than silicic particles due to their 315 

dark colour that does not reflect the laser light well, particle composition seems to play a negligible 316 

role on finger dynamics (e.g. Figure 4).  317 

We have also shown how the number of fingers decreases with a drop in particle concentration 318 

in the upper layer of the tank. Hence, there must be a critical value of particle concentration below 319 

which fingers cannot form. In this sense, our experimental observations suggest that only volcanic 320 

clouds characterized by a relatively high mass load of particles, and, therefore, volcanic eruptions 321 

associated with a large Mass Eruption Rate (MER), are likely to form gravitational instabilities. As 322 

an example, gravitational instabilities were clearly observed during the 23rd November 2013 323 

explosive event of Etna volcano (Italy) that was characterized by a MER of about 105 kg/s 324 

(Andronico et al., 2015) (see Figure 1a). The eruptive plume of the 4th May 2010 Eyjafjallajökull 325 

eruption (Iceland) (Manzella et al., 2015) and of the 17th June 1996 eruption of Ruapehu volcano 326 

(New Zealand) (Bonadonna et al., 2005), which generated well-developed gravitational instabilities, 327 

were also characterized by a MER of about 105 kg/s (e.g. Degruyter and Bonadonna, 2013; Ripepe 328 

et al., 2011; Bonadonna et al., 2005) (see Figures 1b and 1c). Gravitational instabilities were also 329 

observed at the bottom of volcanic clouds associated with the thermal plumes of the August-330 

October 1997 Vulcanian explosions of Montserrat volcano, which injected an average of about 108-331 

109 kg of tephra into the atmosphere in just a few seconds (Bonadonna et al., 2002) (Figure 1d). By 332 

contrast, gravitational instabilities were not observed during the 2011 and 2012 explosive events of 333 

Etna volcano that were characterized by a lower MER (104 kg/s) (Andronico et al., 2014).  334 

Another fundamental condition for the formation of gravitational instabilities in volcanic clouds 335 

is the presence of fine ash. Indeed, gravitational instabilities only formed in our experiments in 336 

association with the sedimentation of particles <125 m. Our results match those reported by Carey 337 

(2007), although he used a different set-up and different concentration, but similar particle 338 
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composition (i.e. 1991 Pinatubo dacitic tephra) and fluid (i.e. water). In addition, both sets of 339 

experiments were performed in water, and, therefore, the critical cut-off size of 125 μm could be 340 

even smaller in air (Carazzo and Jellinek, 2012). All previously mentioned eruptions (i.e. Etna 23 341 

November 2013, Eyjafjallajökull 2010, Montserrat 1997 and Ruapehu 1996) were characterized by 342 

the presence of particles < 125 m, i.e. 6wt% for Ruapehu 1996, 40wt% for Eyjafjallajökull 343 

2010 and 50-80wt% for the August-October 1997 Vulcanian explosions of Montserrat 344 

(Bonadonna et al., 2002; Bonadonna and Houghton 2005; Bonadonna et al., 2011). In addition, 345 

volcanic lightning that is typically associated with particle-laden jet and abundance of fine particles 346 

(Cimarelli et al., 2013), was observed during the 23 November 2013 Etna eruption.  347 

Theory reported in Manzella et al. (2015) shows how an increase in particle concentration in the 348 

upper layer would increase 𝑔′, and, therefore, the finger speed. In fact, finger velocity is equal to: 349 

𝑣𝑓 = 𝑔′
2

5(𝑣𝑝
1

4
𝛿2)1/5, where vp is the particle settling velocity, δ is the Particle Boundary Layer 350 

(PBL) thickness, 𝑔′ is the reduced gravity of the PBL given by 𝑔′ = 𝑔
𝜌𝑃𝐵𝐿−𝜌𝑎

𝜌𝑎
, where 𝑔 is the 351 

gravity and 𝜌𝑃𝐵𝐿 and ρa are the density of PBL and of the atmosphere, respectively. As a result, the 352 

higher the particle concentration in volcanic plumes, the higher the finger speed. Although we 353 

investigated a small range, a slight increase of the finger speed with concentration is also confirmed 354 

by our experiments and by theory (e.g. Hoyal et al., 1999). This aspect should however be explored 355 

further by enlarging the concentration range. Moreover, the theory of Hoyal et al. (1999) can 356 

explain the observed increase of particle speed with particle size and the negligible effect of particle 357 

composition on finger dynamics. First, the larger the particle size, the larger the particle velocity vp, 358 

and, therefore, the finger velocity vf. Second, the main difference among the particle composition is 359 

the variation in density that, however, is negligible for particles < 125 µm (e.g. Bonadonna and 360 

Phillips, 2003; Eychenne and Le Pennec, 2012). In fact, the difference in DRE values is only 361 

between 2240 kg/m3 for Chaitén rhyolitic ash and 2988 kg/m3 for Cerro Negro basaltic ash. 362 

Furthermore, volcanic clouds represent a polydisperse mixture containing a wide range of particle 363 
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sizes even at medial-distal locations. Based on our results and theory, we expect that i) the number 364 

of fingers decreases with the distance from the vent and ii) the finger speed decreases with the 365 

distance from the vent for a combined effect of the reduction of both volcanic ash concentration and 366 

particle size in the upper layer.  367 

Aggregation of ash particles into clusters with a higher terminal fall velocity leads to a reduction 368 

of the atmospheric lifetime (e.g. Brown et al., 2012; Costa et al., 2006; Durant, 2015). It has already 369 

been suggested that aggregation could be enhanced inside the fingers due to the high particle 370 

concentration (e.g. Carazzo and Jellinek, 2012). Our analysis of divergence and vorticity provides 371 

additional evidence that indicates the potential role of gravitational instabilities in forming particle 372 

aggregates. Fluctuations of divergence and vorticity inside the fingers could represent an increase of 373 

particle concentration and turbulence with respect to the surrounding regions, which increases the 374 

probability of collisions, and, therefore, promotes aggregation. Nonetheless, the formation of ash 375 

clusters within volcanic plumes and clouds and the sedimentation of single ash clusters 376 

independently of gravitational instabilities cannot be excluded, in particular when the cluster 377 

settling velocity is higher than the finger settling velocity (e.g. Manzella et al., 2015). 378 

Finally, our results clearly show that the highest values of finger number and finger speed are 379 

associated with their initial formation and both decrease with time. This could be related to the 380 

decrease of particle concentration in the upper layer, which in our experiment progressively 381 

decreases with time. However, during an eruption, volcanic plumes are continuously fed at the 382 

eruptive vent and the decrease in finger number and speed could only occur at the end of the 383 

explosive activity. This also supports the idea that particle aggregation may be more efficient at the 384 

beginning of finger formation when the concentration is the highest. 385 

 386 

5. CONCLUSIONS 387 

A comprehensive physical characterization of the sedimentation processes occurring in volcanic 388 

plumes and clouds relies on a better understanding of the gravitational instabilities. We carried out 389 
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experiments using a Plexiglas tank of 50 cm x 30.3 cm x 7.5 cm equipped with a horizontal 390 

removable plastic pet sheet to separate the two layers. The upper layer was made up of water and 391 

particles, while the lower layer was a solution of water and sugar that was initially denser than the 392 

upper layer. After removing the horizontal plastic pet sheet, particles were illuminated with a laser 393 

and filmed with a HD camera and analysed by PIV. Our experimental investigations provide new 394 

insights into the mechanisms characterizing finger formation and finger dynamics. In particular: 395 

1) Number of fingers and finger speed increase with particle concentration in the upper layer; 396 

this is in agreement with previous experimental observations (e.g., Carazzo and Jellinek, 397 

2012; Manzella et al., 2015) and supports field observations, where fingers have been 398 

observed only in volcanic plumes with relatively high MER (i.e. MER105 kg/s);  399 

2) Gravitational instabilities were observed only with particles <125 m; this also concurs with 400 

previous experimental observations (i.e. Carey 2007; Carazzo and Jellinek, 2012) and 401 

confirms the idea that a relative abundance of fine ash is necessary to generate fingers. 402 

However, the size cut-off in air could be smaller due to different buoyancy; 403 

3) Number of fingers and finger speed are independent of particle composition, suggesting that 404 

finger formation can occur independently of magma composition;  405 

4) The relation between gravitational instabilities and particle aggregation was explored based 406 

on the analysis of divergence and vorticity inside the fingers. These values suggest 407 

heterogeneity in particle concentration and an increase in turbulent motion that need further 408 

exploration with experiments including the analysis of the 3D component. Given that a high 409 

concentration of particles <125 m and turbulence are both factors promoting aggregation, 410 

we can conclude that particle aggregation could easily occur both at the base of the cloud 411 

where fingers form and inside fingers. 412 

 413 
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Figures and Table Captions  424 

Figure 1. Gravitational instabilities associated with:  425 

a) 23 November 2013 lava fountain of Etna volcano, Italy (photo  by 426 

http://www.tboeckel.de/EFSF/efsf_etna/Etna2013/Etna_11_13/volcano_etna_11_2013_e.htm); b) 427 

Eyjafjallajökull plume on 4 May 2010, Iceland (photo by C. Bonadonna); c) 17 June 1996 eruption 428 

of Ruapehu volcano, New Zealand (photo from 429 

http://www.natgeocreative.com/photography/1302290); d) Vulcanian explosion in September 1997, 430 

Montserrat (photo adjusted from Bonadonna et al. (2002)). 431 

Figure 2. Experimental set-up comprising a Plexiglas tank of 30.3 cm x 50 cm x 7.5 cm (x 432 

corresponding to the length (L) direction, y to the height (H), z to the width (W)), a removable pet 433 

sheet, a laser and a HD camera. Particles, HD Camera, and laser instrument are not to scale. The 434 

stirrer used in our mixed experiments is shown in Figure DR4 of the repository material of 435 

Manzella et al. (2015).  436 

Figure 3. Images of experiments with: a) GB with diameter between 32-45 µm (experiment 11 in 437 

Table 1); b) GB with diameter between 63-90 µm (experiment 15 in Table 1); c) Andes-VA with 438 

diameter between 32-45 µm (experiment 22 in Table 1); and d) Andes-VA with diameter between 439 

63-90 µm (experiment 20 in Table 1). Images (26 cm x 16.5 cm) are taken about 10 seconds after 440 

removing the horizontal pet sheet separating the two fluids in unmixed conditions.  441 

Figure 4. Plots showing the number of fingers with respect to: a) particle concentration in the upper 442 

layer (g/l) for GB and Andes-VA and b) particle size (µm) for GB, Andes-VA, Rhyol-VA and 443 

Basalt-VA; and the speed of fingers with respect to: c) particle concentration in the upper layer (g/l) 444 

for GB, Andes-VA, and Theory (Hoyal et al., 1999) and d) particle size for GB and Andes-VA 445 

(µm) (experiments 19 to 26 and 31 to 43 in Table 1).  446 

Figure 5. Images (26 cm x 16.5 cm) showing the number of fingers for the experiments with a 447 

mixed upper layer using a) GB between 45 and 63 µm (experiment 28 in Table 1) and b) Andes-VA 448 

between 45 and 63 µm (experiment 29 in Table 1).  449 

http://www.tboeckel.de/EFSF/efsf_etna/Etna2013/Etna_11_13/volcano_etna_11_2013_e.htm
http://www.natgeocreative.com/photography/1302290
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Figure 6. Images (26 cm x 16.5 cm) of experiments with GB of diameter between 32-45 µm 450 

(experiment 11 in Table 1) taken a) 5 s and b) 30 s and of diameter between 45-63 µm (experiment 451 

3 in Table 1) taken c) 5 s and d) 30 s after removing the horizontal pet sheet. Arrows indicate 452 

observed fingers. 453 

Figure 7. Plot showing the evolution of the finger number with time for GB between 45-63 µm 454 

(experiment 3 in Table 1). 455 

Figure 8. Images (26 cm x 16.5 cm) of experiment 24 in Table 1 that includes Andes-VA with a 456 

wide range of particle sizes (< 125 m) imaged about a) 5 s, b) 10 s, c) 15 s, and d) 20 s after 457 

removing the horizontal pet sheet.  458 

Figure 9. Image of the experiment 7 (Table 1) for GB between 45-63 µm a) after 15 s the finger 459 

formation; b) divergence (s-1) and c) vorticity (s-1) fields and d) divergence and vorticity values 460 

measured along the orange line across the finger in c). 461 

 462 

Table 1. Summary of experiments: experiment number; particle composition including glass beads 463 

(GB), andesitic volcanic ash (Andes-VA), rhyolitic volcanic ash (Rhyol-VA), and basaltic volcanic 464 

ash (Basalt-VA); particle size (S) in µm; Concentration in g/l; the upper layer was both quiescent 465 

(i.e. unmixed experiments, or continually mixed using a rotary stirrer (i.e. mixed experiments) 466 

described in Manzella et al. (2015).  467 

 468 
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Abstract  8 

 9 

Downward propagating instabilities are often observed at the bottom of volcanic plumes and clouds. 10 

These instabilities generate fingers that enhance the sedimentation of fine ash. Despite their 11 

potential influence on tephra dispersal and deposition, their dynamics is not entirely understood, 12 

undermining the accuracy of volcanic ash transport and dispersal models. Here, we present new 13 

laboratory experiments that investigate the effects of particle size, composition and concentration 14 

on finger generation and dynamics. The experimental set-up consists of a Plexiglas tank equipped 15 

with a removable plastic sheet that separates two different layers. The lower layer is a solution of 16 

water and sugar, initially denser than the upper layer, which consists of water and particles. 17 

Particles in the experiments include glass beads as well as andesitic, rhyolitic, and basaltic volcanic 18 

ash. During the experiments, we removed the horizontal plastic sheet separating the two fluids. 19 

Particles were illuminated with a laser and filmed with a HD camera; the Particle Image 20 

Velocimetry (PIV) is used to analyse finger dynamics. Results show that both the number and the 21 

downward advance speed of fingers increase with particle concentration in the upper layer, while 22 

finger speed increases with particle size but is independent of particle composition. An increase in 23 

particle concentration and turbulence is estimated to take place inside the fingers, which could 24 

promote aggregation in subaerial fallout events. Finally, finger number, finger speed and particle 25 

concentration were observed to decrease with time after the formation of fingers. A similar pattern 26 
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could occur in volcanic clouds when the mass supply from the eruptive vent is reduced. Observed 27 

evolution of the experiments through time also indicates that there must be a threshold of fine ash 28 

concentration and mass eruption rate below which fingers do not form; this is also confirmed by 29 

field observations. 30 

Key words: Tephra; Volcanic Plumes; Volcanic Ash; Laboratory Experiments; PIV Analysis; 31 

Particle Aggregation.  32 

  33 
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1. INTRODUCTION 34 

During explosive volcanic eruptions, a large number of volcanic particles is injected into the 35 

atmosphere with the potential of generating significant hazards to nearby communities and various 36 

economic sectors. While fine ash in distal area may produce long-term health risks and is extremely 37 

dangerous for aircraft jet engines due to the accumulation of melted glass particles and erosion of 38 

turbine blades, proximal fallout can cause collapse of buildings and damage to agriculture, 39 

vegetation, lifelines, road networks and critical infrastructures (e.g. Blong, 2000; Miller and 40 

Casadevall, 2000). The volcanic crisis of Eyafjallajökull volcano (2010, Iceland) and Cordón Caulle 41 

volcano (2011, Chile), represent the most recent examples of widespread economic disruption 42 

caused by volcanic ash (e.g. Alexander, 2013; Oxford, 2010; Elissondo et al., 2016; Sammons et al., 43 

2010; Wilson et al., 2013). Volcanic risk can be mitigated thanks to accurate forecasting of tephra 44 

dispersal that builds on a good understanding and description of volcanic plumes and cloud 45 

dynamics and sedimentation. There is a variety of volcanic ash dispersal models based on different 46 

assumptions and modelling strategies (see Folch et al. (2012) for a review). Sensitivity analyses 47 

have demonstrated that, when eruption source parameters are well constrained, eruptive phenomena 48 

such as particle dispersal and sedimentation can be reproduced with good accuracy (e.g. Costa et 49 

al., 2006; Scollo et al., 2010; Bonadonna et al., 2012). However, even after an accurate model 50 

calibration, differences between field data and model results can reach up to 150% (e.g. Scollo et 51 

al., 2008). Causes of these discrepancies include the fact that not all the physical processes of 52 

volcanic plumes and clouds are fully described. Among these processes, the generation and 53 

dynamics of fingers associated with settling-driven gravitational instabilities, also called convective 54 

instabilities, could play an important role (e.g. Carazzo and Jellinek, 2013; Durant, 2015; Manzella 55 

et al., 2015; Figure 1).  56 

In the presence of particle-laden fluids, such as volcanic plumes and clouds, gravitational 57 

instabilities are induced by particle settling across the density interface (Hoyal et al., 1999).  58 

Initially the configuration is gravitationally stable: the lighter particle laden fluid (e.g. volcanic 59 
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current) is emplaced above the denser one (e.g. atmospheric layer). Small variations in density at 60 

different points of the interface occur due to particle settling, generating instabilities. As a 61 

consequence, vertical gravity currents, called fingers, start to develop in the lower layer and lead to 62 

convective motion (Turner, 1979), which drives the vertical transport of particles in the lower layer 63 

(e.g. Carazzo and Jellinek, 2012; Hoyal et al., 1999; Manzella et al., 2015). The main condition for 64 

the formation of settling-driven gravitational instabilities is that the particle suspension behaves as a 65 

continuum and this happens if the finger downward velocity has to be greater than particle settling 66 

velocity (Hoyal et al., 1999). This condition (e.g. the particles to be coupled with the fluid and 67 

efficiently mixed) is satisfied, according to Carazzo and Jellinek (2012), when both the Stokes 68 

number (𝑆𝑡 =
1

𝑓

𝜌𝑝

18

𝑑𝑝
2

𝜇

𝑉

𝐿
) and the Sedimentation number (∑ =

1

𝑓

𝜌𝑝

18

𝑑𝑝
2

𝜇

𝑔

𝑉
) are <1, where f is the drag 69 

factor, 
𝑝

 the particle density (kg m-3),  𝑑𝑝 the particle diameter (m), µ the dynamic viscosity (Pa s), 70 

V (m s-1) and L (m) the characteristic velocity and length for the flow, and g the acceleration due to 71 

gravity (m s-2).  72 

Gravitational instabilities have often been observed in many volcanic plumes and clouds, such as 73 

those associated with the eruption of Mount St. Helens 1980 (USA), Montserrat 1997 (West Indies), 74 

Eyafjallajökull 2010 (Iceland), Ruapehu 1996 (New Zealand) and Etna 2013 (Italy) (Bonadonna et 75 

al., 2002; Bonadonna et al., 2005a; Bonadonna et al. 2005b; Bonadonna et al., 2011; Durant et al., 76 

2009; Manzella et al., 2015; Schultz et al., 2006) (e.g. Figure 1). In recent decades, several authors 77 

have used laboratory experiments to study the effects of gravitational instabilities on tephra 78 

sedimentation. For example, Carey (1997) examined the settling behaviour of volcanic ash (20-180 79 

m diameter) onto a water surface based on an experimental apparatus. The experimental set-up 80 

consisted of a 1.5-m-high settling column positioned over a 30 cm x 30 cm x 70 cm glass tank filled 81 

with water. Particles fell at a constant rate at the top of the column, accumulated on the water 82 

surface and then descended into the tank where they were photographed. Carey (1997) observed 83 

that the formation of fingers is directly linked to the reduction of particle settling velocity at the air-84 
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water interface, which increases the concentration at the boundary layer. He also proved that the 85 

particle settling in the water column was accelerated by the formation of diffuse vertical gravity 86 

currents driven by gravitational instabilities that reduced the residence time of fine ash. Carazzo and 87 

Jellinek (2012) studied gravitational instabilities in volcanic plumes through both laboratory 88 

experiments and theoretical considerations. They found that finger formation reduced the residence 89 

time of fine ash into the gravitationally unstable particle boundary layer of volcanic clouds. 90 

Gravitational instabilities could therefore explain the unusual patterns of some tephra deposits (e.g. 91 

Bonadonna et al., 2002; Bonadonna et al., 2005) and/or the premature sedimentation of fine ash that 92 

are often explained by particle aggregation (e.g. Carey and Sigurdsson, 1982). 93 

Models of sedimentation associated with gravitation instabilities were developed by Hoyal et al. 94 

(1999), recently modified by Manzella et al. (2015). Their formulation builds on the mass balance 95 

equation between the incoming and outcoming flux at the density interface for two different 96 

conditions: an upper quiescent layer (i.e. no external forcing of the fluid motion) and an upper 97 

turbulent layer (i.e. external forcing of the fluid motion). Furthermore, Cardoso and Zarrebini 98 

(2001) analysed buoyant particle-laden flows both experimentally and theoretically. They found 99 

that the development of particle-rich fingers was related to unstable particle stratification and that 100 

both the concentration of particles at the source of the plume, as well as the size of the particles, had 101 

notable influence on the sedimentation pattern in the environment below the surface current. 102 

Recently, Manzella et al. (2015) analysed gravitational instabilities during the 2010 eruption of 103 

Eyjafjallajökull volcano (Iceland) that transported fine ash to the ground at a speed of ~1 m/s, 104 

various orders of magnitude faster than the predicted terminal fall velocities of the smallest 105 

observed particles. These results were confirmed by specific laboratory experiments using glass 106 

beads in a density-stratified aqueous solution. They also showed how particle aggregation was 107 

strongly linked with sedimentation driven by fingers. The relationship between particle aggregation 108 

and gravitational instabilities was also suggested by Carazzo and Jellinek (2012).  109 
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Particle Imaging Velocimetry (PIV) is a widely used technique in fluid dynamics. It enables 110 

measuring the velocity of a fluid through the tracking of several particles able to reflect the light of 111 

a laser sheet (e.g. Adrian, 1991; Adrian, 1995; Adrian, 2005; Grant, 1997; Raffel et al., 2007). In 112 

volcanology, the PIV technique has already been applied to characterize plume dynamics, to 113 

measure the flow velocity for various ranges of particle size, overpressure ratios and densities and 114 

to analyse the effect of collision kinetic energy and atmospheric water vapour in subsaturated 115 

condition on ash aggregation (e.g. Saffaraval et al., 2012, Telling and Dufek, 2012, Chojnicki et al., 116 

2014, Chojnicki et al., 2015a, Chojnicki et al., 2015b).  117 

In our experiments, particles generating fingers are embedded in the fluid and, thanks to their 118 

potential for reflecting laser light, are used as PIV trackers. Experiments are carried out and 119 

analysed by the PIV technique (Section 2) in order to investigate the influence of particle size, 120 

composition and concentration on the formation and dynamics of the fingers (Section 3). 121 

Experimental results are then discussed and compared with observations of fingers occurring during 122 

explosive volcanic eruptions (Section 4).  123 

 124 

2. METHODS 125 

2.1 Experimental setup 126 

Our experimental set-up is described in details by Manzella et al. (2015). The set-up comprises a 127 

Plexiglas tank of 30.3 cm x 50 cm x 7.5 cm (with x corresponding to the length (L), y to the height 128 

(H) and z to the width (W)) equipped with a removable sheet for the partition of two separate layers 129 

(Figure 2). The upper partition (H1 = 13.5 cm), which is filled with water and particles, is 130 

characterized by an initial lower density than the lower partition (H2 = 25.1 cm) that consists of a 131 

solution of water and sugar. The lower layer density was fixed with a value of 1008.4 kg/m3, while 132 

variations in the density in the upper layer depend on the concentration and on the different 133 

densities of particles and, in our experiments, range between 999.8 and 1001.5 kg/m3 (see Manzella 134 

et al. (2015) as GSA data repository for the formulation). The experiments are carried out under 135 
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isothermal conditions and the configuration is suitable to represent the state in which the plume and 136 

fingers are advected at wind speed and the dynamic conditions are similar to those in volcanic 137 

clouds (Manzella et al., 2015). The experiments entail removing the horizontal barrier that separates 138 

the two fluids, and then observing the instabilities formed at the boundary of the two layers 139 

propagating downward (Manzella et al., 2015). Similarly, we consider two different set-ups defined 140 

as unmixed and mixed conditions. During unmixed experiments, particles are fully suspended 141 

before the beginning of the experiment but they do not undergo additional external stirring once the 142 

experiment starts, while, during mixed experiments, particles are continuously mixed with a rotary 143 

stirrer that is stopped 1-2 seconds before the removal of the separation between the two layers (see 144 

also Figure DR4 of the repository material of Manzella et al. (2015)). The stirrer is set at a speed of 145 

30 rpm with a paddle of 6.9 cm (length) by 3.4 cm (diameter).  146 

Experiments were carried out to examine the fluid dynamics associated with finger formation 147 

using a PIV measuring system and image analysis. To this end, we recorded the experiments with a 148 

high speed/high definition camera while a 2 Watt Neodymium-doped YAG (Yttrium Aluminium 149 

Garnet) laser (RayPower 2000 by Dantec Dynamics), located at about 1 m from the frontal tank 150 

wall, generates a green light to illuminate the particles used as tracer for the PIV analysis (Figure 2). 151 

We were then able to measure the number and speed of fingers by image analysis and, therefore, to 152 

assess the effect of concentration, size and particle composition on their generation and dynamics.  153 

2.2 Experimental conditions  154 

Particles used in our experiments include 4 grain-size classes of Glass Beads (GB), i.e. with 155 

diameter < 32 µm, between 32-45 µm, between 45-63 µm, and between 63-90 µm as well as 6 156 

grain-size classes of Andesitic, Rhyolitic, and Basaltic Volcanic Ash (Andes-VA; Rhyol-VA; 157 

Basalt-VA, respectively), i.e. with diameter < 32 µm, 32-45 µm, 45-63 µm, 63-90 µm, 90-125 µm, 158 

and 125-180 µm (Table 1). An additional class was also considered, where we mixed all the 159 

particles with diameter <125 µm (called <125 µm in Table 1) to study the effect of using a widely 160 

polydisperse mixture. Populations of different particle size were obtained through mechanical 161 
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sieving at the University of Geneva and the above-mentioned grain-size classes have been named 162 

after the sieves used which follow the international standard classification ISO3310. Laser 163 

diffraction analyses carried out with the CILAS 1180 instrument on selected samples indicate a 164 

good sorting inside the considered ranges (Folk and Ward, 1957). 165 

For the andesitic composition, we used samples of volcanic ash erupted during the 2010 eruption 166 

of Eyjafjallajökull volcano (Iceland). This eruption produced a continuous volcanic plume up to 10 167 

km above sea level between 14 April and 21 May 2010 (Gudmundsson et al., 2012). Glass 168 

composition ranges from benmoreite to trachyte with a silica content between 56 and 68 wt% and a 169 

total alkali from 7.3 and 9.1wt% (Cioni et al., 2014). The ash considered in our experiments was 170 

sampled between 4 and 8 May 2010 (Bonadonna et al., 2011). For the rhyolitic composition, we 171 

used samples of volcanic ash erupted during the May 2008 eruption of Chaitén volcano (Chile) 172 

(Alfano et al., 2011; Alfano et al., 2012; Alfano et al., 2016). The bulk magma composition of the 173 

main phase of this eruption varies between 73.0 and 75.5 wt% of SiO2 (Alfano et al., 2011). Finally, 174 

for the basaltic composition, we used samples of volcanic ash from the 1992 eruption of Cerro 175 

Negro (Nicaragua) that lasted for about 21 days and was associated with a volcanic plume up to 176 

about 7 km a.s.l. (e.g. Connor and Connor, 2006; Connor et al, 1993). The silica content varies 177 

between 48.64 and 52.15 wt% (Roggensack et al., 1997).  The density of individual size classes is 178 

complex to determine; however, based on the detailed analysis of Eychenne and Le Pennec (2012), 179 

we can assume that the density of fine ash is close to their Dense Rock Equivalent (DRE) value. 180 

The mean DRE value (measured with a helium pycnometer) of Eyjafjallajökull, Chaitén and Cerro 181 

Negro ash is 2738 kg m−3 (Bonadonna et al. 2011), 2240 kg m−3 (Alfano et al. 2012) and 2988 kg 182 

m−3 (measured for this work), respectively. 183 

Three concentrations were considered to generate fingers: C1 = 3 g/l, C2 = 4 g/l, C3 = 5 g/l. The 184 

concentrations were chosen based on experimental constraints as reported in Manzella et al. (2015). 185 

In fact, both lower and higher concentrations are not detectable experimentally based on the grey 186 

scale measuring strategy. The particle volumetric concentration in the experiments is then in the 187 
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order of 10-9, which, together with their capacity to reflect the laser light, confirms that the particles 188 

used can be exploited as tracers in PIV analysis. This is also supported by the fact that they are 189 

coupled with the fluid since both their Stokes and Sedimentation numbers are < 1 (i.e. they are in 190 

the range of 10-4-10-1 and 0.5-1, respectively) for the grain-size and particle composition analysed in 191 

our experiments (Carazzo and Jellinek, 2012). A detailed list of experiments is reported in Table 1. 192 

In unmixed conditions, different tests were carried using GB with different concentrations 193 

(experiment 1-10), GB with different sizes (experiments 11-17), Andes-VA with different sizes 194 

(experiments 18-24) and Andes-VA with different concentrations (experiments 25-26). Experiments 195 

with mixed conditions were carried out only for GB and Andes-VA in the range between 45 and 63 196 

m (experiments 28-29) and for Andes-VA with diameter < 125 m (experiments 27 and 30). 197 

However, the experiment 27 did not provide a good PIV analysis and was not considered for further 198 

analysis. Experiments were finally carried out for Rhyol-VA and Basalt-VA with all the grain size 199 

classes considered (experiments 31-34) in unmixed conditions. Experiments with GB were repeated 200 

up to three times to verify the repeatability of the measurements (e.g. experiments 12-13, 14-15 and 201 

16-17), while experiments with volcanic ash were carried out only once because of the limited 202 

amount of material available. It is worth mentioning that GB particles are more visible than 203 

volcanic ash particles, reflecting the laser light more efficiently. Among volcanic particles, the 204 

Andes-VA ones reflect the laser light best and therefore, once the effect of the composition has 205 

been studied, these were preferred for tests with volcanic ash. 206 

2.3 Data analysis 207 

Images of 1624 x 1600 pixel sizes were taken at of 0.03 s time steps and each particle captured by 208 

the camera that scattered the laser light was used for the PIV analysis with the Dynamic Studio 209 

Software (DANTEC, http://www.cefd-imech.ac.vn/lab/3D_PIV/DynamicStudio%20Manual.pdf). 210 

PIV technique is based on the fact that the image intensity field at each instant corresponds to the 211 

position of the particles reflecting the laser light and it assumes that between two instants t and t + 212 

∆t, i.e. two consecutive exposures to the laser light, all particles inside a previously defined 213 
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interrogation window have moved together with the fluid with the same displacement vector, ∆X.  214 

This interrogation area (IA) should be small enough to respect this assumption but large enough to 215 

contain at least 10 particles reflecting the laser light to evaluate the intensity field. On the other 216 

hand, the particle volume fraction should be smaller than 10-4, so that they are easily visible and do 217 

not influence the fluid flow. For this reason, in order to find the most suitable interrogation window 218 

and thus increase the accuracy of the analysis, the Dynamic Studio Software uses an iterative 219 

process that reduces the size of the interrogation area progressively from 128x128 to 16x16 pixels. 220 

In this framework, using a spatially statistical cross-correlation function which relates the difference 221 

in image intensity between two instants, we are able to evaluate the displacement of the fluid and 222 

the velocity vector for each interrogation area (Raffel et al., 2007). In addition, the DANTEC 223 

software is also used to evaluate the finger speed (m/s) measuring the position of the finger front at 224 

different times, the divergence (s-1) and the vorticity (s-1) fields.  225 

As also described in the Dynamic Studio software manual, the divergence of a 3D vector 226 

velocity field 𝑈 is defined as: 227 

𝑑𝑖𝑣(𝑈̅) =
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
+

𝜕𝑊

𝜕𝑧
.     (1)  228 

For planar data gradients, as the one analysed with PIV, it reduces to: 229 

𝑑𝑖𝑣(𝑈𝑉̅̅ ̅̅ ) =
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
     (2) 230 

with x, y and z indicating the axis associated with the length, height, and width in Figure 2.  231 

Non-zero divergence values could indicate local changes in density and, therefore, local changes of 232 

particles concentration or, when the fluid is incompressible, a non-negligible variation of the 233 

velocity in the z direction.  234 

Vorticity is a vector quantity, which corresponds to the rotation of the fluids. For planar data 235 

gradient only the z-component of vorticity, 𝜔𝑧, can be calculated: 236 

𝜔𝑧 =
𝜕𝑉

𝜕𝑥
−

𝜕𝑈

𝜕𝑦
 .       (3) 237 
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According to Tritton (1988), turbulent flows are characterised by non-zero, fluctuating vorticity. 238 

Even if the studied gravitational instabilities cannot be considered two-dimensional because they 239 

have a component in the out of plane direction (z = W in Figure 2), this component is significantly 240 

smaller than the longitudinal (x = L in Figure 2) and vertical (y = H in Figure 2) dimensions of the 241 

tank, i.e. a few millimetres versus tens of centimetres. In addition, a single finger is mostly axi-242 

symmetrical with respect to the flow direction, so we can assume that what we observe in a single 243 

finger in the x-y plane would be similar to what we could observe in the y-z plane. As a result, we 244 

consider that the PIV two-dimensional analysis can globally capture the main flow dynamics 245 

involved in the gravitational instabilities. 246 

 247 

3. RESULTS 248 

Figure 3 shows selected images of the experiments using GB and Andes-VA particles between 32 249 

and 45 µm and between 63 and 90 µm with C1 as concentration and in unmixed condition 250 

(experiments 11, 15, 20 and 22 in Table 1). Fingers are clearly visible a few seconds (> 3s) after the 251 

sheet is removed and are of approximately the same size in each experiment. 252 

Our analysis shows that the descending fingers have an irregular shape during the formation 253 

stage, and descend with large caps at their tips (e.g. Figure 3). The number of fingers increases with 254 

particle concentration (Figure 4a), but does not depend on the particle size and composition (Figure 255 

4b). The mean wavelength, given by L/n where L is the length of the box (30.3 cm) and n is the 256 

number of fingers, ranges between 2.2 and 2.9 cm.  Finger speed has a poor dependence on the 257 

particle concentration in the range of concentration investigated here (Figure 4c) and increases with 258 

particle size (Figure 4d). The experimental error bars in Figures 4a and 4b was evaluated by the 259 

standard deviation obtained from the mean value of finger number in ten images taken 3 s after 260 

removing the sheet. The mean and standard deviation in Figures 4c and 4d are instead evaluated by 261 

the analysis of five fingers over the course of one whole experiment.  262 
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It is worth mentioning that particles greater than 125 µm did not generate fingers (experiment 18 263 

in Table 1). The number of fingers also depends on the experimental conditions of the upper layer. 264 

Figures 5a and 5b illustrate experiments with a “mixed” upper layer using GB and Andes-VA 265 

between 45 and 63 µm (experiments 28 and 29 in Table 1) showing a higher number of fingers (2-3 266 

fingers more for both cases) with respect to “unmixed” experiments. Finger speed, instead, is 267 

independent of initial mixing.  268 

We also analysed the evolution of finger dynamics with time. In general, the downward 269 

movement of fingers was not steady and we observed similar oscillations to those reported in 270 

Carazzo and Jellinek (2012). For the same class size, we found a general decrease of finger number 271 

with time mainly at the interface due to the decrease of the particle concentration in the upper layer. 272 

As an example, the experiment 11 in Table 1 (i.e. GB with size between 32-45 m) shows 11 and 8 273 

fingers, respectively, 5 and 30 s after the sheet was removed (Figures 6a and b). The speed of 274 

fingers is about 4.5 1.1 mm/s and 2.4  0.2 mm/s after about 7 and 20 s, respectively. This 275 

behaviour was similar for different class sizes (e.g. Figures 6c and 6d). Figure 7 shows the variation 276 

of the finger number with respect to time for GB between 45 and 63 m (experiment 3). At the 277 

beginning of the experiment, the number of fingers is 111 and after about 30 s the number of 278 

fingers remains almost constant (between 71 and 61). A power law fits the evolution with time 279 

well (R2=0.88; Figure 7). We found that the finger speed was 4.6  1.1, 3.0  1.0 and 2.4  1.3 280 

mm/s at 10 s, at 20 s and 30 s, respectively. The study of finger evolution with time was also carried 281 

out for Andes-VA particles (experiments 19, 29, and 30) and for volcanic ash with a wide range of 282 

size (< 125 m) showing similar trends. As an example, Figure 8 shows the experiment 24 in Table 283 

1 carried out with Andes-VA. At the beginning of the experiment (< 10 s), fingers contain particles 284 

with the widest size range. In fact, even though particle size cannot be quantitatively assessed with 285 

PIV, a qualitative assessment can be made based on backscattering because larger particles show a 286 

smaller backscattering of the laser light and are less visible in the images retrieved by the camera 287 
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than smaller particles. In agreement with our previous observations, this experiment also shows 288 

how both the number and speed of fingers decrease with time. In particular, we observe 12 and 11 289 

fingers after 5 and 10 s and 9 and 8 fingers after 15 sec and 20 s, respectively. The associated speed 290 

is 7.9  1.2, 6.1  1.0, 4.6  1.7 and 4.3  0.8 mm/s after 5, 10, 15 and 20 s, respectively.  291 

Finally, we investigated the divergence and vorticity fields for GB and Andes-VA with different 292 

particle size and, in general, we found that divergence was zero everywhere except at the interface 293 

and inside the fingers. Figure 9 shows how the highest variation of the relative values of divergence 294 

and vorticity are concentrated in the fingers, where we also notice an increase of the brightness 295 

coming from the laser reflection of the particles (Figure 9a). An increase in brightness is hence 296 

associated with an increasing number of reflecting particles. As aforementioned, a non-zero 297 

divergence for PIV planar data could be associated with a significant velocity component along the 298 

out of plane direction (width in Figure 2), which cannot be excluded considering the 3D nature of 299 

fingers. However, the occurrence of the highest variations in divergence, even if small, combined 300 

with an increase of brightness within the fingers (Figures 9a and 9b), could suggest a temporary and 301 

localized variation in particle concentration. By contrast, a fluctuation of vorticity values in the x-y 302 

plane can be associated with a turbulence motion regardless of the 3D nature of the fingers. We can 303 

then infer that gravitational instabilities could be likely associated with an increase of concentration 304 

and turbulence with respect to initial conditions. 305 

 306 

4. DISCUSSION  307 

Our experiments confirm previous findings that gravitational instabilities have a marked effect on 308 

the sedimentation of volcanic ash (e.g. Carazzo and Jellinek, 2012; Manzella et al., 2015) and the 309 

analysis of these instabilities provide new insights into the effect of particle concentration, size and 310 

composition and into the evolution of fingers with time. Based on the analysis of divergence and 311 

vorticity, the formation of gravitational instabilities also has implications on particle aggregation.  312 
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Results show how the number of fingers depends largely on particle concentration in the upper 313 

layer, as already concluded by Hoyal et al. (1999), while finger speed mostly depends on particle 314 

size. Even though basaltic particles were more difficult to analyze than silicic particles due to their 315 

dark colour that does not reflect the laser light well, particle composition seems to play a negligible 316 

role on finger dynamics (e.g. Figure 4).  317 

We have also shown how the number of fingers decreases with a drop in particle concentration 318 

in the upper layer of the tank. Hence, there must be a critical value of particle concentration below 319 

which fingers cannot form. In this sense, our experimental observations suggest that only volcanic 320 

clouds characterized by a relatively high mass load of particles, and, therefore, volcanic eruptions 321 

associated with a large Mass Eruption Rate (MER), are likely to form gravitational instabilities. As 322 

an example, gravitational instabilities were clearly observed during the 23rd November 2013 323 

explosive event of Etna volcano (Italy) that was characterized by a MER of about 105 kg/s 324 

(Andronico et al., 2015) (see Figure 1a). The eruptive plume of the 4th May 2010 Eyjafjallajökull 325 

eruption (Iceland) (Manzella et al., 2015) and of the 17th June 1996 eruption of Ruapehu volcano 326 

(New Zealand) (Bonadonna et al., 2005), which generated well-developed gravitational instabilities, 327 

were also characterized by a MER of about 105 kg/s (e.g. Degruyter and Bonadonna, 2013; Ripepe 328 

et al., 2011; Bonadonna et al., 2005) (see Figures 1b and 1c). Gravitational instabilities were also 329 

observed at the bottom of volcanic clouds associated with the thermal plumes of the August-330 

October 1997 Vulcanian explosions of Montserrat volcano, which injected an average of about 108-331 

109 kg of tephra into the atmosphere in just a few seconds (Bonadonna et al., 2002) (Figure 1d). By 332 

contrast, gravitational instabilities were not observed during the 2011 and 2012 explosive events of 333 

Etna volcano that were characterized by a lower MER (104 kg/s) (Andronico et al., 2014).  334 

Another fundamental condition for the formation of gravitational instabilities in volcanic clouds 335 

is the presence of fine ash. Indeed, gravitational instabilities only formed in our experiments in 336 

association with the sedimentation of particles <125 m. Our results match those reported by Carey 337 

(2007), although he used a different set-up and different concentration, but similar particle 338 
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composition (i.e. 1991 Pinatubo dacitic tephra) and fluid (i.e. water). In addition, both sets of 339 

experiments were performed in water, and, therefore, the critical cut-off size of 125 μm could be 340 

even smaller in air (Carazzo and Jellinek, 2012). All previously mentioned eruptions (i.e. Etna 23 341 

November 2013, Eyjafjallajökull 2010, Montserrat 1997 and Ruapehu 1996) were characterized by 342 

the presence of particles < 125 m, i.e. 6wt% for Ruapehu 1996, 40wt% for Eyjafjallajökull 343 

2010 and 50-80wt% for the August-October 1997 Vulcanian explosions of Montserrat 344 

(Bonadonna et al., 2002; Bonadonna and Houghton 2005; Bonadonna et al., 2011). In addition, 345 

volcanic lightning that is typically associated with particle-laden jet and abundance of fine particles 346 

(Cimarelli et al., 2013), was observed during the 23 November 2013 Etna eruption.  347 

Theory reported in Manzella et al. (2015) shows how an increase in particle concentration in the 348 

upper layer would increase 𝑔′, and, therefore, the finger speed. In fact, finger velocity is equal to: 349 

𝑣𝑓 = 𝑔′
2

5(𝑣𝑝
1

4
𝛿2)1/5, where vp is the particle settling velocity, δ is the Particle Boundary Layer 350 

(PBL) thickness, 𝑔′ is the reduced gravity of the PBL given by 𝑔′ = 𝑔
𝜌𝑃𝐵𝐿−𝜌𝑎

𝜌𝑎
, where 𝑔 is the 351 

gravity and 𝜌𝑃𝐵𝐿 and ρa are the density of PBL and of the atmosphere, respectively. As a result, the 352 

higher the particle concentration in volcanic plumes, the higher the finger speed. Although we 353 

investigated a small range, a slight increase of the finger speed with concentration is also confirmed 354 

by our experiments and by theory (e.g. Hoyal et al., 1999). This aspect should however be explored 355 

further by enlarging the concentration range. Moreover, the theory of Hoyal et al. (1999) can 356 

explain the observed increase of particle speed with particle size and the negligible effect of particle 357 

composition on finger dynamics. First, the larger the particle size, the larger the particle velocity vp, 358 

and, therefore, the finger velocity vf. Second, the main difference among the particle composition is 359 

the variation in density that, however, is negligible for particles < 125 µm (e.g. Bonadonna and 360 

Phillips, 2003; Eychenne and Le Pennec, 2012). In fact, the difference in DRE values is only 361 

between 2240 kg/m3 for Chaitén rhyolitic ash and 2988 kg/m3 for Cerro Negro basaltic ash. 362 

Furthermore, volcanic clouds represent a polydisperse mixture containing a wide range of particle 363 
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sizes even at medial-distal locations. Based on our results and theory, we expect that i) the number 364 

of fingers decreases with the distance from the vent and ii) the finger speed decreases with the 365 

distance from the vent for a combined effect of the reduction of both volcanic ash concentration and 366 

particle size in the upper layer.  367 

Aggregation of ash particles into clusters with a higher terminal fall velocity leads to a reduction 368 

of the atmospheric lifetime (e.g. Brown et al., 2012; Costa et al., 2006; Durant, 2015). It has already 369 

been suggested that aggregation could be enhanced inside the fingers due to the high particle 370 

concentration (e.g. Carazzo and Jellinek, 2012). Our analysis of divergence and vorticity provides 371 

additional evidence that indicates the potential role of gravitational instabilities in forming particle 372 

aggregates. Fluctuations of divergence and vorticity inside the fingers could represent an increase of 373 

particle concentration and turbulence with respect to the surrounding regions, which increases the 374 

probability of collisions, and, therefore, promotes aggregation. Nonetheless, the formation of ash 375 

clusters within volcanic plumes and clouds and the sedimentation of single ash clusters 376 

independently of gravitational instabilities cannot be excluded, in particular when the cluster 377 

settling velocity is higher than the finger settling velocity (e.g. Manzella et al., 2015). 378 

Finally, our results clearly show that the highest values of finger number and finger speed are 379 

associated with their initial formation and both decrease with time. This could be related to the 380 

decrease of particle concentration in the upper layer, which in our experiment progressively 381 

decreases with time. However, during an eruption, volcanic plumes are continuously fed at the 382 

eruptive vent and the decrease in finger number and speed could only occur at the end of the 383 

explosive activity. This also supports the idea that particle aggregation may be more efficient at the 384 

beginning of finger formation when the concentration is the highest. 385 

 386 

5. CONCLUSIONS 387 

A comprehensive physical characterization of the sedimentation processes occurring in volcanic 388 

plumes and clouds relies on a better understanding of the gravitational instabilities. We carried out 389 
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experiments using a Plexiglas tank of 50 cm x 30.3 cm x 7.5 cm equipped with a horizontal 390 

removable plastic pet sheet to separate the two layers. The upper layer was made up of water and 391 

particles, while the lower layer was a solution of water and sugar that was initially denser than the 392 

upper layer. After removing the horizontal plastic pet sheet, particles were illuminated with a laser 393 

and filmed with a HD camera and analysed by PIV. Our experimental investigations provide new 394 

insights into the mechanisms characterizing finger formation and finger dynamics. In particular: 395 

1) Number of fingers and finger speed increase with particle concentration in the upper layer; 396 

this is in agreement with previous experimental observations (e.g., Carazzo and Jellinek, 397 

2012; Manzella et al., 2015) and supports field observations, where fingers have been 398 

observed only in volcanic plumes with relatively high MER (i.e. MER105 kg/s);  399 

2) Gravitational instabilities were observed only with particles <125 m; this also concurs with 400 

previous experimental observations (i.e. Carey 2007; Carazzo and Jellinek, 2012) and 401 

confirms the idea that a relative abundance of fine ash is necessary to generate fingers. 402 

However, the size cut-off in air could be smaller due to different buoyancy; 403 

3) Number of fingers and finger speed are independent of particle composition, suggesting that 404 

finger formation can occur independently of magma composition;  405 

4) The relation between gravitational instabilities and particle aggregation was explored based 406 

on the analysis of divergence and vorticity inside the fingers. These values suggest 407 

heterogeneity in particle concentration and an increase in turbulent motion that need further 408 

exploration with experiments including the analysis of the 3D component. Given that a high 409 

concentration of particles <125 m and turbulence are both factors promoting aggregation, 410 

we can conclude that particle aggregation could easily occur both at the base of the cloud 411 

where fingers form and inside fingers. 412 

 413 
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Figures and Table Captions  424 

Figure 1. Gravitational instabilities associated with:  425 

a) 23 November 2013 lava fountain of Etna volcano, Italy (photo  by 426 

http://www.tboeckel.de/EFSF/efsf_etna/Etna2013/Etna_11_13/volcano_etna_11_2013_e.htm); b) 427 

Eyjafjallajökull plume on 4 May 2010, Iceland (photo by C. Bonadonna); c) 17 June 1996 eruption 428 

of Ruapehu volcano, New Zealand (photo from 429 

http://www.natgeocreative.com/photography/1302290); d) Vulcanian explosion in September 1997, 430 

Montserrat (photo adjusted from Bonadonna et al. (2002)). 431 

Figure 2. Experimental set-up comprising a Plexiglas tank of 30.3 cm x 50 cm x 7.5 cm (x 432 

corresponding to the length (L) direction, y to the height (H), z to the width (W)), a removable pet 433 

sheet, a laser and a HD camera. Particles, HD Camera, and laser instrument are not to scale. The 434 

stirrer used in our mixed experiments is shown in Figure DR4 of the repository material of 435 

Manzella et al. (2015).  436 

Figure 3. Images of experiments with: a) GB with diameter between 32-45 µm (experiment 11 in 437 

Table 1); b) GB with diameter between 63-90 µm (experiment 15 in Table 1); c) Andes-VA with 438 

diameter between 32-45 µm (experiment 22 in Table 1); and d) Andes-VA with diameter between 439 

63-90 µm (experiment 20 in Table 1). Images (26 cm x 16.5 cm) are taken about 10 seconds after 440 

removing the horizontal pet sheet separating the two fluids in unmixed conditions.  441 

Figure 4. Plots showing the number of fingers with respect to: a) particle concentration in the upper 442 

layer (g/l) for GB and Andes-VA and b) particle size (µm) for GB, Andes-VA, Rhyol-VA and 443 

Basalt-VA; and the speed of fingers with respect to: c) particle concentration in the upper layer (g/l) 444 

for GB, Andes-VA, and Theory (Hoyal et al., 1999) and d) particle size for GB and Andes-VA 445 

(µm) (experiments 19 to 26 and 31 to 43 in Table 1).  446 

Figure 5. Images (26 cm x 16.5 cm) showing the number of fingers for the experiments with a 447 

mixed upper layer using a) GB between 45 and 63 µm (experiment 28 in Table 1) and b) Andes-VA 448 

between 45 and 63 µm (experiment 29 in Table 1).  449 

http://www.tboeckel.de/EFSF/efsf_etna/Etna2013/Etna_11_13/volcano_etna_11_2013_e.htm
http://www.natgeocreative.com/photography/1302290


20 

 

Figure 6. Images (26 cm x 16.5 cm) of experiments with GB of diameter between 32-45 µm 450 

(experiment 11 in Table 1) taken a) 5 s and b) 30 s and of diameter between 45-63 µm (experiment 451 

3 in Table 1) taken c) 5 s and d) 30 s after removing the horizontal pet sheet. Arrows indicate 452 

observed fingers. 453 

Figure 7. Plot showing the evolution of the finger number with time for GB between 45-63 µm 454 

(experiment 3 in Table 1). 455 

Figure 8. Images (26 cm x 16.5 cm) of experiment 24 in Table 1 that includes Andes-VA with a 456 

wide range of particle sizes (< 125 m) imaged about a) 5 s, b) 10 s, c) 15 s, and d) 20 s after 457 

removing the horizontal pet sheet.  458 

Figure 9. Image of the experiment 7 (Table 1) for GB between 45-63 µm a) after 15 s the finger 459 

formation; b) divergence (s-1) and c) vorticity (s-1) fields and d) divergence and vorticity values 460 

measured along the orange line across the finger in c). 461 

 462 

Table 1. Summary of experiments: experiment number; particle composition including glass beads 463 

(GB), andesitic volcanic ash (Andes-VA), rhyolitic volcanic ash (Rhyol-VA), and basaltic volcanic 464 

ash (Basalt-VA); particle size (S) in µm; Concentration in g/l; the upper layer was both quiescent 465 

(i.e. unmixed experiments, or continually mixed using a rotary stirrer (i.e. mixed experiments) 466 

described in Manzella et al. (2015).  467 

 468 
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Experiment 
number  

Particle  
composition 

Particle size 
(µm) 

Concentration 
(g/l) 

Experiment 
conditions 

1 GB 45-63 3 Unmixed 
2 GB 45-63 3 Unmixed 
3 GB 45-63 3 Unmixed 
4 GB 45-63 4 Unmixed 
5 GB 45-63 4 Unmixed 
6 GB 45-63 4 Unmixed 
7 GB 45-63 4 Unmixed 
8 GB 45-63 5 Unmixed 
9 GB 45-63 5 Unmixed 

10 GB 45-63 5 Unmixed 
11 GB 32-45 3 Unmixed 
12 GB 32-45 3 Unmixed 
13 GB 32-45 3 Unmixed 
14 GB 63-90 3 Unmixed 
15 GB 63-90 3 Unmixed 
16 GB <32 3 Unmixed 
17 GB <32 3 Unmixed 
18 Andes-VA 125-180 3 Unmixed 
19 Andes-VA 90-125 3 Unmixed 
20 Andes-VA 63-90 3 Unmixed 
21 Andes-VA 45-63 3 Unmixed 
22 Andes-VA 32-45 3 Unmixed 
23 Andes-VA <32 3 Unmixed 
24 Andes-VA <125 3 Unmixed 
25 Andes-VA 63-90 4 Unmixed 
26 Andes-VA 63-90 5 Unmixed 
27 Andes-VA <125 3 Mixed 
28 GB 45-63 3 Mixed 
29 Andes-VA 45-63 3 Mixed 
30 Andes-VA <125 3 Mixed 
31 Rhyol-VA <32 3 Unmixed 
32 Rhyol-VA 32-45 3 Unmixed 
33 Rhyol-VA 45-63 3 Unmixed 
34 Rhyol-VA 63-90 3 Unmixed 
35 Rhyol-VA 90-125 3 Unmixed 
36 Rhyol-VA <125 3 Unmixed 
37 Basalt-VA <32 3 Unmixed 
38 Basalt-VA 32-45 3 Unmixed 
39 Basalt-VA 45-63 3 Unmixed 
40 Basalt-VA 63-90 3 Unmixed 
41 Basalt-VA 90-125   3 Unmixed 
42 Basalt-VA <125 3 Unmixed 
43 Basalt-VA <32 3 Unmixed 
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