196 research outputs found

    An integrative, multiscale view on neural theories of consciousness.

    Get PDF
    How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories

    An Open Resource for Non-human Primate Imaging.

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    Benthic and substrate cover data derived from photo-transect surveys in Heron Reef.

    No full text
    Underwater georeferenced photo-transect survey was conducted on September 23 - 27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. For this survey a snorkeler or diver swam over the bottom while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. A standard digital compact camera was placed in an underwater housing and fitted with a 16 mm lens which provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey diver/snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry-bag and logged its position as it floated at the surface while being towed by the photographer. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of each benthic. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned to 1 out of 80 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to gps coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South

    Spectral reflectance library of algal, seagrass and substrate types in Moreton Bay, Australia.

    No full text
    Ten samples of each substrata were collected randomly and placed on a black background where each sample covered a homogenous 5 cm x 5 cm area. Radiance-reflectance measurements were collected using an Analytical Spectral Devices spectrometer (ASD VNIR), which recorded in the visible to infrared (400-1050 nm) wavelengths in 1024 bands (at 2 nm intervals, with a 7 nm Full-Width-Half Maximum power resolution), using a 68 field of view.Upwelling radiance measurements (Lu) were obtained in sunlight by placing the spectrometer optics 15 cm vertically above the target. A SpectralonTM panel, approximating a 100% reflective Lambertian surface, was measured prior to each sample as a surrogate for down-welling irradiance (Ed). A radiance-reflectance signature was then calculated for each sample by dividing the target radiance by the Spectralon panel radiance (Lu/Ed). A mean spectral reflectance signature was produced by averaging 10 measurements for each target.Spectral signatures include: seagrass and algae species, sand, mud and cyanobacteria (Lyngbya majuscula)

    Spectral reflectance library of selected biotic and abiotic coral reef features in Heron Reef

    No full text
    Underwater spectral reflectance was measured for selected biotic and abiotic coral reef features of Heron Reef from June 25-30, 2006. Spectral reflectance's of 105 different benthic types were obtained in-situ. An Ocean Optics USB2000 spectrometer was deployed in an custom made underwater housing with a 0.5 m fiber-optic probe mounted next to an artificial light source. Spectral readings were collected with the probe(bear fibre) about 5 cm from the target to ensure that the target would fill the field of view of the fiber optic (FOV diameter ~4.4 cm), as well as to reduce the attenuating effect of the intermediate water (Roelfsema et al., 2006). Spectral readings included for one target included: 1 reading of the covered spectral fibre to correct for instrument noise, 1 reading of spectralon panel mounted on divers wrist to measure incident ambient light, and 8 readings of the target. Spectral reflectance was calculated for each target by first subtracting the instrument noise reading from each other reading. The corrected target readings were then divided by the corrected spectralon reading resulting in spectral reflectance of each target reading. An average target spectral reflectance was calculated by averaging the eight individual spectral reflectance's of the target. If an individual target spectral reflectance was visual considered an outlier, it was not included in the average spectral reflectance calculation. See Roelfsema at al. (2006) for additional info on the methodology of underwater spectra collection

    GPS linked photos of benthic cover transect surveys in Heron Reef

    No full text
    Underwater photo-transect surveys were conducted on September 23-27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. This survey was done by swimming along pre-defined transect sites and taking a picture of the bottom substrate parallel to the bottom at constant vertical distance (30cm) every two to three metres. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of transect surveys. Approximation of the coordinates for each benthic photo was based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software. Coordinates of each photo were interpolated by finding the the gps coordinates that were logged at a set time before and after the photo was captured. The output of this process was an ArcMap point shapefile, a Google Earth KML file and a thumbnail of each benthic photo taken. The data in the ArcMap shapefile and in the Google Earth KML file consisted of the approximated coordinate of each benthic photo taken during the survey. Using the GPS Photo Link extension within the ArcMap environment, opening the ArcMap shapefile will enable thumbnail to be displayed on the associated benthic cover photo whenever hovering with the mouse over a point on the transect. By downloading the GPSPhotoLink software from the www.geospatialexperts.com, and installing it as a trial version the ArcMap exstension will be installed in the ArcMap environment

    GPS linked photos of benthic cover transect surveys in Heron Reef

    No full text
    The output of this process was an ArcMap point shapefile, a Google Earth KML file and a thumbnail of each benthic photo taken. The data in the ArcMap shapefile and in the Google Earth KML file consisted of the approximated coordinate of each benthic photo taken during the survey. Using the GPS Photo Link extension within the ArcMap environment, opening the ArcMap shapefile will enable thumbnail to be displayed on the associated benthic cover photo whenever hovering with the mouse over a point on the transect.By downloading the GPSPhotoLink software from the www.geospatialexperts.com, and installing it as a trial version the ArcMap extension will be installed in the ArcMap environment
    corecore