64 research outputs found

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    FDG-PET Parameters as Prognostic Factor in Esophageal Cancer Patients: A Review

    Get PDF
    Background:18F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been used extensively to explore whether FDG Uptake can be used to provide prognostic information for esophageal cancer patients. The aim of the present review is to evaluate the literature available to date concerning the potential prognostic value of FDG uptake in esophageal cancer patients, in terms of absolute pretreatment values and of decrease in FDG uptake during or after neoadjuvant therapy. Methods: A computer-aided search of the English language literature concerning esophageal cancer and standardized uptake values was performed. This search focused on clinical studies evaluating the prognostic value of FDG uptake as an absolute value or the decrease in FDG uptake and using overall mortality and/or disease-related mortality as an end point. Results: In total, 31 studies met the predefined criteria. Two main groups were identified based on the tested prognostic parameter: (1) FDG uptake and (2) decrease in FDG uptake. Most studies showed that pretreatment FDG uptake and postneoadjuvant treatment FDG uptake, as absolute values, are predictors for survival in univariate analysis. Moreover, early decrease in FDG uptake during neoadjuvant therapy is predictive for response and survival in most studies described. However, late decrease in FDG uptake after completion of neoadjuvant therapy was predictive for pathological response and survival in only 2 of 6 studies. Conclusions: Measuring decrease in FDG uptake early during neoadjuvant therapy is most appealing, moreover because the observed range of values expressed as relative decrease to discriminate responding from nonresponding patients is very small. At present inter-institutional comparison of results is difficult because several different normalization factors for FDG uptake are in use. Therefore, more research focusing on standardization of protocols and inter-institutional differences should be performed, before a PET-guided algorithm can be universally advocated

    [(18)F]FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy.

    Get PDF
    To compare the prognostic value of different anatomical and functional metabolic parameters determined using [(18)F]FDG-PET/CT with other clinical and pathological prognostic parameters in cervical cancer (CC). Thirty-eight patients treated with standard curative doses of chemo-radiotherapy (CRT) underwent pre- and post-therapy [(18)F]FDG-PET/CT. [(18)F]FDG-PET/CT parameters including mean tumor standardized uptake values (SUV), metabolic tumor volume (MTV) and tumor glycolytic volume (TGV) were measured before the start of CRT. The post-treatment tumor metabolic response was evaluated. These parameters were compared to other clinical prognostic factors. Survival curves were estimated by using the Kaplan-Meier method. Cox regression analysis was performed to determine the independent contribution of each prognostic factor. After 37 months of median follow-up (range, 12-106), overall survival (OS) was 71 % [95 % confidence interval (CI), 54-88], disease-free survival (DFS) 61 % [95 % CI, 44-78] and loco-regional control (LRC) 76 % [95 % CI, 62-90]. In univariate analyses the [(18)F]FDG-PET/CT parameters unfavorably influencing OS, DFS and LRC were pre-treatment TGV-cutoff ≥562 (37 vs. 76 %, p = 0.01; 33 vs. 70 %, p = 0.002; and 55 vs. 83 %, p = 0.005, respectively), mean pre-treatment tumor SUV cutoff ≥5 (57 vs. 86 %, p = 0.03; 36 vs. 88 %, p = 0.004; 65 vs. 88 %, p = 0.04, respectively) and a partial tumor metabolic response after treatment (9 vs. 29 %, p = 0.0008; 0 vs. 83 %, p < 0.0001; 22 vs. 96 %, p < 0.0001, respectively). After multivariate analyses a partial tumor metabolic response after treatment remained as an independent prognostic factor unfavorably influencing DFS and LRC (RR 1:7.7, p < 0.0001, and RR 1:22.6, p = 0.0003, respectively) while the pre-treatment TGV-cutoff ≥562 negatively influenced OS and DFS (RR 1:2, p = 0.03, and RR 1:2.75, p = 0.05). Parameters capturing the pre-treatment glycolytic volume and metabolic activity of [(18)F]FDG-positive disease provide important prognostic information in patients with CC treated with CRT. The post-therapy [(18)F]FDG-PET/CT uptake (partial tumor metabolic response) is predictive of disease outcome

    Trabecular Meshwork Gene Expression after Selective Laser Trabeculoplasty

    Get PDF
    BACKGROUND: Trabecular meshwork and Schlemm's canal are the tissues appointed to modulate the aqueous humour outflow from the anterior chamber. The impairment of their functions drives to an intraocular pressure increase. The selective laser trabeculoplasty is a laser therapy of the trabecular meshwork able to decrease intraocular pressure. The exact response mechanism to this treatment has not been clearly delineated yet. The herein presented study is aimed at studying the gene expression changes induced in trabecular meshwork cells by selective laser trabeculoplasty (SLT) in order to better understand the mechanisms subtending its efficacy. METHODOLOGY/PRINCIPAL FINDINGS: Primary human trabecular meshwork cells cultured in fibroblast medium underwent selective laser trabeculoplasty treatment. RNA was extracted from a pool of cells 30 minutes after treatment while the remaining cells were further cultured and RNA was extracted respectively 2 and 6 hours after treatment. Control cells stored in incubator in absence of SLT treatment were used as reference samples. Gene expression was evaluated by hybridization on miRNA-microarray and laser scanner analysis. Scanning electron microscopic examination was performed on 2 Trabecular meshwork samples after SLT at 4(th) and 6(th) hour from treatment. On the whole, selective laser trabeculoplasty modulates in trabecular meshwork the expression of genes involved in cell motility, intercellular connections, extracellular matrix production, protein repair, DNA repair, membrane repair, reactive oxygen species production, glutamate toxicity, antioxidant activities, and inflammation. CONCLUSIONS/SIGNIFICANCE: SLT did not induce any phenotypic alteration in TM samples. TM is a complex tissue possessing a great variety of function pivotal for the active regulation of aqueous humour outflow from the anterior chamber. SLT is able to modulate these functions at the postgenomic molecular level without inducing damage either at molecular or phenotypic levels

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Einmalige Anwendung von Suprathel® bei einem Säugling mit Toxisch Epidermaler Nekrolyse (TEN)

    No full text
    corecore