1,351 research outputs found

    The Effect of Temperature and Solvent on Nitrogen Trichloride Additions; Acetylene Hydrocarbons and Nitrogen Trichloride

    Get PDF
    The yield of the addition product of NCl3 and 2-butene increases with a decrease in the temperature at which the reaction is carried out, the best yields being obtained at about -20° C. At temperatures much below this, the reaction is very slow. The yields are better with carbon tetrachloride as the solvent than with the other solvents used. Acetylene hydrocarbons react with nitrogen trichloride forming nitrogen and ammonium chloride. Only traces of an amine are obtained

    Topological defects and Goldstone excitations in domain walls between ferromagnetic quantum Hall effect liquids

    Full text link
    It is shown that the low-energy spectrum of a ferromagnetic quantum Hall effect liquid in a system with a multi-domain structure generated by an inhomogeneous bare Zeeman splitting ϵZ\epsilon_{Z} is formed by excitations localized at the walls between domains. For a step-like ϵZ(r)\epsilon_Z(r), the domain wall spectrum includes a spin-wave with a linear dispersion and a small gap due to spin-orbit coupling, and a low-energy topological defects. The latter are charged and may dominate in the transport under conditions that the percolation through the network of domain walls is provided.Comment: 4 pages, 1 fi

    Spin-density Wave in Ising-coupled Antiferromagnetic Chains

    Full text link
    The effect of anisotropy in the nearest-neighbor spin interactions that couple N2N\geq 2 consecutive spin-1/2 antiferromagnetic chains is studied theoretically by considering the limit where the coupling is purely of the Ising type. An analysis based on the equivalent Luttinger model reveals that the groundstate is an Ising antiferromagnet in general.Comment: 11 pgs. of plain TeX, one postscript fig., to appear in Phys. Rev.

    Large, high quality single-crystals of the new Topological Kondo Insulator, SmB6

    Get PDF
    SmB6 has recently been predicted to be a Topological Kondo Insulator, the first strongly correlated heavy fermion material to exhibit topological surface states. High quality crystals are necessary to investigate the topological properties of this material. Single crystal growth of the rare earth hexaboride, SmB6, has been carried out by the floating zone technique using a high power xenon arc lamp image furnace. Large, high quality single-crystals are obtained by this technique. The crystals produced by the floating zone technique are free of contamination from flux materials and have been characterised by resistivity and magnetisation measurements. These crystals are ideally suited for the investigation of both the surface and bulk properties of SmB6

    Ultrasound attenuation in gap-anisotropic systems

    Get PDF
    Transverse ultrasound attenuation provides a weakly-coupled probe of momentum current correlations in electronic systems. We develop a simple theory for the interpretation of transverse ultrasound attenuation coefficients in systems with nodal gap anisotropy. Applying this theory we show how ultrasound can delineate between extended-s and d-wave scenarios for the cuprate superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde

    Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania

    Get PDF
    Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude. Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively. Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data

    Optical study of the electronic phase transition of strongly correlated YbInCu_4

    Full text link
    Infrared, visible and near-UV reflectivity measurements are used to obtain conductivity as a function of temperature and frequency in YbInCu_4, which exhibits an isostructural phase-transition into a mixed-valent phase below T_v=42 K. In addition to a gradual loss of spectral weight with decreasing temperature extending up to 1.5 eV, a sharp resonance appears at 0.25 eV in the mixed-valent phase. This feature can be described in terms of excitations into the Kondo (Abrikosov-Suhl) resonance, and, like the sudden reduction of resistivity, provides a direct reflection of the onset of coherence in this strongly correlated electron system.Comment: 4 pages, 3 figures (to appear in Phys. Rev. B

    Constraints on the origin and evolution of Iani Chaos, Mars

    Get PDF
    [1] The origin mechanisms and geologic evolution of chaotic terrain on Mars are poorly constrained. Iani Chaos, located at the head Ares Vallis, is among the most geomorphologically complex of the chaotic terrains. Its morphology is defined by (1) multiple, 1 to 2 km deep basins, (2) flat‐topped, fractured plateaus that are remnants of highland terrain, (3) knobby, fractured remnants of highland terrain, (4) plateaus with a knobby surface morphology, (5) interchaos grooved terrain, (6) interior layered deposits (ILDs), and (7) mantling material. Topography, the observed geomorphology, and measured fracture patterns suggest that the interchaos basins formed as a result of subsurface volume loss and collapse of the crust, likely owing to effusion of groundwater to the surface. Regional patterns in fracture orientation indicate that the basins developed along linear zones of preexisting weakness in the highland crust. Multiple overlapping basins and fracture systems point to multiple stages of collapse at Iani Chaos. Furthermore, the total estimated volume loss from the basins (104 km3) is insufficient to explain erosion of 104–105 km3 of material from Ares Vallis by a single flood. Comparisons with the chronology of Ares Vallis indicate multiple water effusion events from Iani Chaos that span the Hesperian, with termination of activity in the early Amazonian. Recharge of groundwater through preexisting fracture systems may explain this long‐lived, but likely episodic, fluvial activity. Late‐stage, early to middle Amazonian aqueous processes may have deposited the ILDs. However, the topography data indicate that the ILDs did not form within lacustrine environments

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE
    corecore