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Abstract: In order to study the influence of compactness on low-energy properties, we

compare the phase structures of the compact and non-compact two-dimensional multi-

frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and

non-compact models coincides, but their low-energy behaviors differ. The critical frequency

β2 = 8π at which the sine-Gordon model undergoes a topological phase transition is found

to be unaffected by the compactness of the field since it is determined by high-energy scaling

laws. However, the compact two-frequency sine-Gordon model has first and second order

phase transitions determined by the low-energy scaling: we show that these are absent in

the non-compact model.
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1. Introduction

The computation in a completely controlled way of renormalization group (RG) flows in

gauge theories is at date a challenging issue. A major reason for such difficulties is the

fact that, one must adopt a regularization scheme which incorporates a gauge invariant

cutoff even for approximated treatments of exact RG equations. A related problem is the

determination of critical properties and phases of compact field theories, since, compactness

can be considered as one of the simplest realization of the gauge symmetry [1] and a general

treatment for the controlled computation of renormalization flows in gauge theories would

apply to the RG study of compact field theories.

Sic stantibus rebus, in order to study the influence of compactness on low-energy prop-

erties, it would be then relevant to compare the phase structure of a field theory with the

fields being respectively compact and non-compact. In this paper we perform such compar-

ison for the multi-frequency sine-Gordon (SG) model in 1 + 1 dimensions. Several reasons

lead us to the choice and use of such a model for the purpose of studying the effects of

compactness: first, the single-frequency SG is a paradigmatical example of integrable field

theory [2], very well studied in the last four decades. Second, the rich phase structure of

the compact double-frequency SG has been the subject of intense study [3, 4, 5, 6, 7, 8, 9],

and, last but not least, the non-compact multi-frequency SG model (MFSG) can be studied

using non-perturbative RG methods [10].
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The importance of the SG model stems from the fact that it is directly related to inter-

acting fermionic field theories through bosonization [11]. In low dimensions exact bosoniza-

tion rules enable one to reformulate fermionic and gauge models in terms of elementary

scalar fields. The equivalence between the massive Thirring model and the sine-Gordon

(SG) scalar theory [12] is a well-known example. Two-dimensional gauge models like the

multi-flavor quantum electrodynamics (QED2) [13, 14, 15] and the single-flavor quantum

chromodynamics (QCD2) [16] can also be rewritten as a multi-component SG theory where

the SG fields are coupled by a mass-matrix. It has been also shown that various aspects of

the low-energy QCD2 with multi-flavors (and with unequal quark masses) can be described

by the so-called generalized SG model [17] of which reduced sub-model is the MFSG model

with non-compact field variable.

Moreover, the SG model, the simplest non-trivial quantum field theory which can

be used to study confinement phenomena, has already received a considerable attention

in several areas of physics. For example, in string theory the SG model is assumed to be

related to the classical string on specific manifolds [18] and the possible contribution of new

type of SG models to brane profile has also been studied [19] in the framework of Randall-

Sudrum [20] theory. SG type model has recently been investigated in 3+1 dimensions in the

context of axion physics [21]. Furthermore, the SG model is used as a textbook example for

integrable systems and it has many applications in condensed matter and statistical physics

as well, e.g. coupled SG models were successfully used to describe the vortex dynamics

of layered high transition temperature superconductors [22]. Another attractive property

of low-dimensional SG models is that they provide us an excellent playground to test and

compare various types of non-perturbative methods [23]. For example, SG type models

have already been investigated in the framework of Integrable and Conformal Field Theory

(CFT) [24] and the exact functional RG treatment for these periodic models has also been

developed [25, 22, 15, 14, 26].

Our goal in this paper is to consider the non-compact MFSG model by means of the

functional RG approach and to compare our findings to those obtained by other methods for

the non-compact and compact models, as well. In particular, we investigate the influence

of the compact or non-compact nature of the field variable on the low-energy behavior of

the MFSG model whose action reads as [3, 4, 5, 6, 7, 8, 9]

SMFSG =

∫

d2x

[

1

2
∂µφ∂µφ −

n
∑

i

µi cos(βiφ + δi)

]

(1.1)

which contains n cosine terms where φ is a real scalar field, βi ∈ R are the frequencies,

βi 6= βj if i 6= j, µi are the coupling constants (of dimension mass2 at the classical level)

and δi ∈ R are the phases in the terms of the potential. Let us note that the MFSG model

is usually defined on the two-dimensional Minkowski space, however, in this paper we use

the Euclidean action which is more convenient for an RG study and it is generally assumed

to be suitable for mapping out the phase structure of the model.

Two cases can be distinguished according to the periodicity properties of the model.

The first one is the rational case, when the potential is a trigonometric function: the

ratios of the frequencies βi are rational and consequently, the potential is periodic. Let the
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period of the potential be 2πβ in this case. Then the target space of the field φ can be

compactified: φ ≡ φ + 2kβπ, where k ∈ N can be chosen arbitrarily. The model obtained

in this way is called the k-folded multi-frequency SG model [5]. The other case is the

irrational one, when the potential is not periodic. We restrict our attention to the rational

case in the present paper.

At the quantum level the theory can be considered as a perturbation of its high-

energy/ultraviolet (UV) limiting conformal field theory [3, 4, 5, 6, 7, 8, 9]

SMFSG = SCFT + Spert, (1.2)

where

SCFT =

∫

d2x
1

2
∂µφ∂µφ,

Spert = −
1

2

∫

d2x

n
∑

i=1

(µie
iδiVβi

+ µie
−iδiV−βi

),

with the vertex operator Vω =: eiωφ : which corresponds to a primary field with confor-

mal dimensions ∆±
ω = ∆ω = ω2

8π in the UV limit and the upper index ± corresponds to

the left/right conformal algebra and : : denotes the conformal normal ordering. Cor-

respondingly, the dimensions of the couplings in the UV limit at the quantum level are

[µi] = (mass)2−2∆i with ∆i ≡ ∆βi
.

It was shown by semiclassical (mean-field/Landau-Ginzburg) analysis [3] and by means

of form factor perturbation and truncated conformal space approaches [3, 6, 8, 9] that (first

and second order) phase transitions occur in the compact MFSG model as the coupling

constants are tuned appropriately (assuming that n > 1). For example, according to

the semi-classical results [3], the double-frequency SG model (for δ1 = 0, δ2 = π/2 and

β2 = β1/2)

VDFSG(φ) = −µ1 cos(β1φ) + µ2 sin

(

β1

2
φ

)

(1.3)

undergoes a second order (Ising-type) phase transition at µ2 = 4µ1 [3]. This second order

phase transition was found to appear for all frequencies 0 < β2 < 8π beyond the semi-

classical level, see e.g. the phase diagram in Fig. 7.5 of [6] which was determined by

form factor perturbation theory and truncated conformal space approach. The Ising-type

phase transition was also confirmed by renormalization group techniques based on operator

product expansion in real space [27]. Let us note, that in this case the field variable is

defined as a compact variable. It was also argued that the MFSG model reduces to the

classical (single-frequency) SG model in the limit of δi → 0 for i = 1, 2, ...,∞ and µi → 0 for

i = 2, 3, ...,∞. It was also shown that the SG model defined by the action which contains

non-compact field variable [25, 26] belongs to the universality class of the two-dimensional

Coulomb gas and the two-dimensional XY model, consequently, its phase transition at

β2
c = 8π is a topological or Kosterlitz-Thouless-Berezinskii (KTB) type one [28]. It is also

known that the classical SG model with a compact field variable also possesses a topological

phase transition at β2
c = 8π. Therefore, on the one hand, the MFSG model with compact
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field variable has Ising-type phase transitions (for n > 1), on the other hand in case of a

single cosine (for n = 1) with compact and non-compact fields the model has a topological

phase transition. Consequently, it represents an excellent toy model to study the influence

of the compactness on the phase structure and the low-energy behavior of the model.

Our goal is to compare the UV/IR scaling behavior and the phase structure of the

MFSG models with compact and non-compact field variables: we study the MFSG theory

with non-compact fields by means of the functional RG method in the local potential

approximation, discussing the comparison with the available results for the compact model

[3, 4, 5, 6, 7, 8, 9, 27]. The structure of our paper is the following: a brief introduction of RG

equations used for the renormalization of the non-compact MFSG model is given in Section

2. In Section 3, the connection between RG equations and symmetries of the MFSG model

is discussed. The UV and IR scaling laws of the non-compact MFSG model are determined

and compared to those of the compact model in Sections 4 and 5, respectively. Finally,

Section 6 presents the summary and our concluding remarks.

2. Renormalization Group Approach

In this section we briefly discuss the functional RG equations used for the renormalization

of the MFSG model. The differential RG transformations are realized via a blocking

construction [29], the successive elimination of the degrees of freedom which lie above

the running UV momentum cutoff k. Consequently, the effective theory described by

the blocked action contains quantum fluctuations whose frequencies are smaller than the

momentum cutoff. This procedure generates the functional RG flow equation [30, 31, 32]

k∂kΓk[φ] =
1

2
Tr

(

Γ
(2)
k [φ] + Rk

)−1
k∂kRk

for the effective action Γk[φ] when various types of regulator functions Rk are used, where

Γ
(2)
k [φ] denotes the second functional derivative of the effective action (see e.g. [10]). Here

Rk is a properly chosen IR regulator function which fulfils a few basic constraints to ensure

that Γk approaches the bare action in the UV limit (k → Λ) and the full quantum effective

action in the IR limit (k → 0). Indeed, various renormalization schemes are constructed in

such a manner that the RG flow starts at the bare action and provides the effective action

in the IR limit, so that the physical predictions (e.g. fixed points and critical exponents)

are independent of the renormalization scheme particularly used [35, 33, 34].

Since RG equations are functional partial differential equations it is not possible to

solve them in general, hence, approximations are required. One of the commonly used

systematic approximation is the truncated derivative expansion where the effective action

is expanded in powers of the derivative of the field [35, 33, 34],

Γk[φ] =

∫

x

[

Vk(φ) + Zk(φ)
1

2
(∂µφ)2 + ...

]

.

In the local potential approximation (LPA) higher derivative terms are neglected and the

wave-function renormalization is set equal to constant, i.e. Zk ≡ 1. In this paper we
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use two types of RG equations (i.e. two different IR regulators Rk), namely the Wegner-

Houghton [36] and the Polchinski [37] RG approaches. However, let us note that in the

LPA, the two-dimensional Wegner-Houghton RG equation is mathematically equivalent

(see e.g. [33]) to the effective average action RG equation [30, 31] with the power-law

regulator Rk(p
2) ≡ p2(p2/k2)−b [32] with b = 1 and the functional Callan-Symanzik RG

equation [38].

2.1 Wegner–Houghton, effective average action and functional Callan-Symanzik

RG equations

In this section, we consider three types of RG equations, namely the Wegner–Houghton,

the effective average action with power-law regulator (b = 1) and the functional Callan-

Symanzik RG equations which have the same form in LPA for d = 2 dimensions [33].

The blocking in momentum space, i.e. the integration over the field fluctuations with

momenta of the magnitude between the UV scale Λ and zero is performed in successive

blocking steps over infinitesimal momentum intervals k → k−∆k each of which consists of

the splitting the field variable, φ = ϕ + φ′ in such a manner that ϕ and φ′ contain Fourier

modes with |p| < k − ∆k and k − ∆k < |p| < k, respectively and the integration over φ′

leads to the Wegner–Houghton (WH) RG equation [36]

(2 + k∂k) Ṽk(φ) = −
1

4π
ln

(

1 + Ṽ ′′
k (φ)

)

(2.1)

with Ṽ ′′
k (φ) = ∂2

φṼk(φ) for the dimensionless local potential Ṽk = k−2Vk for d = 2 dimen-

sions in the leading order of the derivative expansion, in the LPA when φ reduces to a

constant. (Below we suppress the notation of the field-dependence of the local potential

and use notations with tilde for dimensionless quantities where the dimension is taken away

by the appropriate power of the gliding cutoff k.) The differentiation with respect to the

field variable and the multiplication with 1+Ṽ ′′
k leads to the derivative form of the WH–RG

equation [33]

(2 + k∂k)Ṽ
′
k = −Ṽ ′′

k (2 + k∂k)Ṽ
′
k −

1

4π
Ṽ ′′′

k . (2.2)

This equation is obtained by assuming the absence of instabilities for the modes around

the gliding cutoff k. The WH-RG scheme which uses the sharp gliding cutoff k can also

account for the spinodal instability, which appears when the restoring force acting on the

field fluctuations to be eliminated vanishes, 1 + Ṽ ′′
k (φ) = 0 at some finite scale kSI and

the resulting condensate generates tree-level contributions to the evolution equation. The

saddle point φ′
0 for the single blocking step k → k−∆k is obtained by minimizing the action,

Sk−∆k[φ] = minφ′

0
(Sk[φ + φ′

0]). The restriction of the space of saddle-point configurations

to that of the plane waves φ′
0 = ρ cos(k1x) gives [39]

Ṽk−∆k(φ) = min
ρ

[

ρ2 +
1

2

∫ 1

−1
duṼk(φ + 2ρ cos(πu))

]

(2.3)

in LPA, where the minimum is sought for the amplitude ρ only. It was shown that the

tree-level RG equation (2.3) leads to the local potential [33]

Ṽk→0 = −
1

2
φ2 + cφ + const, (2.4)
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which can also be obtained as the solution of 1 + Ṽ ′′
k→0(φ) = 0 (in case of a φ → −φ

symmetry the linear term vanishes, c = 0). Therefore, if SI occurs during the RG flow at

some scale kSI > 0, then Eqs. (2.1) or (2.2) should be applied only for scales k > kSI, and

the tree-level renormalization Eq.(2.3) or Eq.(2.4) should be performed at scales k < kSI.

For d = 2 dimensions the effective average action (EAA) RG equation with power-law

regulator can be written in the LPA as

(2 + k∂k)Ṽk = −
1

4π

∫ Λ2/k2

0
dy

(−b)y−b y

y(1 + y−b) + Ṽ ′′
k

(2.5)

with y = p2/k2. For arbitrary parameter value b, the propagator on the right hand side of

Eq. (2.5) may develop a pole at some scale kSI and at some value of the field φ for which

Ṽ ′′
k (φ) = −C(b) = −b/(b − 1)(b−1)/b holds, which signals the occurring of SI. The infrared

singularity of the functional RG equation is supposed to be related to the convexity of the

effective action for theories within a phase of spontaneous symmetry breaking [31]. It was

shown that in such a case one has to seek the local potential for k < kSI by minimizing Γk

in the subspace of inhomogeneous (soliton like) field configurations and ends up with the

result [31, 10]

Ṽk→0 = −
1

2
C(b)φ2 + cφ + const. (2.6)

It is worthwhile noticing that Eq. (2.5) with the power-law regulator leads to the WH-RG

equation (2.1), and Eq. (2.6) leads to Eq. (2.4) for b = 1 as well as for b → ∞ in the limit

Λ → ∞. This feature holds only for d = 2.

In the functional Callan-Symanzik (CS) type internal space RG method [38], the suc-

cessive elimination of the field fluctuations is performed in the space of the field variable

(internal space) as opposed to the usual RG methods where the blocking transformations

are realized in either the momentum or the real (external) space. The functional CS–RG

equation for the one-component scalar field theory for dimensions d = 2 in the LPA reads

(2 + λ∂λ) Ṽλ = − 1
4π ln

(

1 + Ṽ ′′
λ

)

(2.7)

with the control parameter λ. This equation is mathematically equivalent to the two-

dimensional WH–RG equation in the LPA assuming the equivalence of the scales λ ≡ k.

However, for dimensions d 6= 2 the functional CS–RG and the WH–RG differ from each

other. Assuming the above mentioned equivalence of the scales λ and k, there occurs

the same singularity in the right hand side of (2.7) as the one in the WH-RG approach.

Therefore, the functional CS–RG signals the SI with the vanishing of the argument of the

logarithm in the right hand side of (2.7). The solution of (2.7) provides the scaling laws

down to the scale kSI and one has to turn to the tree-level renormalization with the help

of the WH-RG approach in order to determine the IR scaling laws.

Since the WH–RG, EAA–RG with power-law regulator (b = 1) and the functional

CS–RG equations have the same form in LPA for d = 2 dimensions, in this paper we refer

to them as the WH–RG equation.
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2.2 Polchinski’s RG equation

In Polchinski’s RG (P–RG) method [37] the realization of the differential RG transfor-

mations is based on a non-linear generalization of the blocking procedure using a smooth

momentum cutoff. In the infinitesimal blocking step the field variable φ is split again into

the sum of a slowly oscillating IR and a fast oscillating UV components, but both fields

contain now low- and high-frequency modes, as well, due to the smoothness of the cutoff.

Above the moving momentum scale k the propagator for the IR component is suppressed

by a properly chosen smooth regulator function K(y) with y = p2/k2, K(y) → 0 if y >> 1,

and K(y) → 1 if y << 1. The P–RG equation in LPA for d = 2 dimensions reads as

(2 + k∂k)Ṽk = −[Ṽ ′
k]2K ′

0 + Ṽ ′′
k I2, (2.8)

where K ′ = ∂yK(y), K ′
0 = ∂yK(y)|y=0 and I2 = (1/4π)

∫ ∞
0 dyK ′(y) = −1/4π. The

parameter K ′
0 can be eliminated by the rescaling of the potential and the field variable,

consequently, it does not influence the physics. In order to make the comparison of the RG

flows obtained by various RG methods straightforward, we choose K ′
0 = −1 for which the

linearized forms of Eq. (2.1) and Eq. (2.8) and the UV scaling laws obtained by WH–RG

and P–RG are identical. Then the differentiation of both sides of Eq. (2.8) with respect to

the field variable φ yields [33]

(2 + k∂k)Ṽ
′
k = 2Ṽ ′′

k Ṽ ′
k −

1

4π
Ṽ ′′′

k (2.9)

being independent of the regulator function K(y) and differing of the WH–RG equation

(2.2) by the term −Ṽ ′′
k k∂kṼ

′
k and by the opposite sign for the non-linear term. Let us note,

that the P–RG method treats all quantum fluctuations below and above the scale k on the

same footing due to the usage of the smooth cutoff. Therefore, even if there occurs a scale

kSI at which 1 + Ṽ ′′
k exhibits zeros, no singular behavior is expected in case of the P–RG

equation, consequently Eq.(2.9) can be applied above (k > kSI) and below (k < kSI) the

scale kSI with the price of the SI being unnoticed.

3. Symmetries and Renormalization

As a rule, the solution of the RG equations is sought for in a restricted functional subspace

[10]. Since the RG equations retain the symmetries of the bare action, the functional sub-

space should be chosen keeping the symmetries of the bare action unbroken. Furthermore,

even this – generally infinite dimensional – subspace is reduced to a finite dimensional one

by the truncation of the appropriate series expansion of the blocked potential. For example,

the potential can be expanded in powers of the field variable Vk(φ) =
∑N

n=1 cn(k)φn with

a truncation at the power N and the scale-dependence is encoded in the coupling constants

cn(k). In this case one has to check whether the results obtained are independent of N .

It is known that O(M) scalar models can be considered in Taylor expanded form only if

M > 1 (for M = 1, strong oscillatory behavior of the critical exponents in terms of N is

observed) [10]. Similarly, the truncated Fourier expanded form can be a straightforward

approximation for scalar models with periodicity in internal space [25, 26].
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Let us now turn to the symmetries of MFSG models if the ratios of the frequencies are

rational. Then the bare potential is periodic in the internal space, let be its period 2πβ,

and one has to look for the solution of the RG equations among the periodic functions

with such a period. The bare potential may have however further symmetries as well. For

example, the MFSG models can exhibit a reflection symmetry besides periodicity. Three

cases can be distinguished.

• Let us suppose that the bare potential of the MFSG model contains a single cosine

mode with δ1 = 0

ṼΛ(φ) = µ̃1 cos (β φ) . (3.1)

In this case the model has a discrete reflection symmetry (φ → −φ), which is pre-

served by the WH–RG and P–RG equations. Since the RG transformations generate

higher harmonics, one is inclined to look for the solution in its Fourier decomposed

form

Ṽk(φ) =

N
∑

n=0

ũn(k) cos (n β φ) , (3.2)

exhibiting periodicity in the internal space. The dimensionless couplings are repre-

sented by the Fourier amplitudes ũn(k) (with ũ1(k = Λ) = µ̃1) and the ‘frequency’ β

is a scale-independent, dimensionless parameter in the LPA.

• If the bare potential of the MFSG model contains a single sine mode (i.e. δ1 = 3π/2)

ṼΛ(φ) = µ̃1 sin (β φ) , (3.3)

the model has another discrete Z2 symmetry (φ → −π/β − φ) which is preserved

by the RG equations. The potential is antisymmetric but the RG equations are not,

consequently, one has to look for the solution of the RG equations as

Ṽk(φ) =

N
∑

n=0

[ũ2n(k) cos (2nβφ) + ṽ2n+1(k) sin ((2n + 1)βφ)] (3.4)

with the dimensionless Fourier amplitudes ũ2n(k) and ṽ2n+1(k) (and ṽ1(k = Λ) = µ̃1).

Let us note that the double-frequency SG model (1.3) belongs to this case, too.

• Finally, if the bare potential of the MFSG model contains both cosine and sine modes

(i.e. δ1 = 0 and δ2 = 3π/2)

ṼΛ(φ) = µ̃1 cos (β φ) + µ̃2 sin (β φ) , (3.5)

the model has no Z2 symmetry, consequently, all the Fourier modes are generated

during the RG flow and the solution has the general form

Ṽk(φ) =

N
∑

n=0

[ũn(k) cos (nβφ) + ṽn(k) sin (nβφ)] , (3.6)

with the dimensionless Fourier amplitudes ũn(k) and ṽn(k) (and ũ1(k = Λ) = µ̃1,

ṽ1(k = Λ) = µ̃2).
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Since Eq.(3.6) represents the blocked potential for the most general MFSG model with

rational frequency ratios, let us further discuss that case. Inserting the ansatz (3.6) into

the derivative form of the WH–RG equation (2.2) one can read off RG flow equations for

the Fourier amplitudes, i.e. for the scale-dependent dimensionless couplings ũn(k), ṽn(k)

which read as

(2 + k∂k)nũn = β2

4πn3ũn + β2

2

∑N
s=1

(

sA
(1)
n,s(2 + k∂k)ũs + sA

(4)
n,s(2 + k∂k)ṽs

)

, (3.7)

(2 + k∂k)nṽn = β2

4πn3ṽn − β2

2

∑N
s=1

(

sA
(2)
n,s(2 + k∂k)ũs + sA

(3)
n,s(2 + k∂k)ṽs

)

, (3.8)

where

A(1)
n,s(k) = (n − s)2ũ|n−s| − (n + s)2ũn+sΘ(n + s ≤ N),

A(2)
n,s(k) = sgn(s − n) (n − s)2ṽ|n−s| + (n + s)2ṽn+sΘ(n + s ≤ N),

A(3)
n,s(k) = −(n − s)2ṽ|n−s| − (n + s)2ṽn+sΘ(n + s ≤ N),

A(4)
n,s(k) = sgn(s − n) (n − s)2ṽ|n−s| − (n + s)2ṽn+sΘ(n + s ≤ N),

with sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0, and Θ(n ≤ N) = 1 if n ≤ N and

Θ(n ≤ N) = 0 if n > N . Let us note that Eq. (2.2) and, consequently, Eq. (3.7), Eq. (3.8)

are valid unless SI arises.

Using the same machinery in the framework of the P–RG, one obtains from Eq. (2.9)

the flow equations for ũn(k) and ṽn(k)

(2 + k∂k)nũn =
β2

4π
n3ũn − β2

N
∑

s=1

(

sA(1)
n,sũs + sA(4)

n,sṽs

)

, (3.9)

(2 + k∂k)nṽn =
β2

4π
n3ṽn + β2

N
∑

s=1

(

sA(2)
n,sũs + sA(3)

n,sṽs

)

, (3.10)

where A
(i)
n,s, (i = 1, 2, 3, 4) are the same as those obtained for the WH–RG equation. Let

us note, that the P–RG method does not take into account SI, consequently, Eq. (3.9) and

Eq. (3.10) are valid at all scales k.

Let us end this section with the remark that the strong reduction of the functional

subspace, in particular the truncation of the expansion of the blocked potential in a series of

base functions may become unreliable when the blocked action becomes almost degenerate,

i.e. 1+ Ṽ ′′
k approaches zero. This motivates a direct numerical solution of the RG equation

for the blocked potential which avoids any assumption on the functional subspace where

the solution is sought for and any truncated series expansion in some base functions [10, 40,

41]. Therefore, we solved the RG equations (2.2) and (2.9) directly by using a computer

algebraic program with periodic boundary conditions and the bare initial potential was

chosen as a harmonic function.

4. UV scaling

Before the study of the low-energy/IR behavior of the MFSG model, let us first discuss the

high-energy/UV scaling. This can be achieved by the linearization of the RG equations
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(3.7), (3.8) and (3.9), (3.10) around the UV Gaussian fixed point (Ṽ ∗(φ) ≡ 0) which results

in the following uncoupled set of differential equations

(2 + k∂k)ũn =
β2

4π
n2ũn, (4.1)

(2 + k∂k)ṽn =
β2

4π
n2ṽn, (4.2)

which is independent of the RG method used. The solution

ũn(k) = ũn(Λ)

(

k

Λ

)
β2

4π
n2−2

, (4.3)

ṽn(k) = ṽn(Λ)

(

k

Λ

)
β2

4π
n2−2

, (4.4)

gives the same UV scaling as that obtained for the compact MFSG model in [27]. These

UV scaling laws can be understood if one considers the MFSG model as a perturbation of

the corresponding CFT, c.f. the discussion below Eq. (1.2). One should conclude that the

kinetic term of the action suppresses the large amplitude (φ2 ≫ 1/p2) quantum fluctuations

with large momentum (Λ2 > p2 > k2) close to the UV cutoff and, therefore the UV scaling

laws are not influenced by the compactness of the field variable.

5. IR scaling

In the IR domain neither the kinetic term nor the periodic potential terms are able to sup-

press the contributions of the large-amplitude quantum fluctuations with small momenta.

Therefore, the compact and non-compact MFSG models are expected to behave differently

in the IR domain. There are two ways to determine the IR scaling of the non-compact

MFSG model in the LPA, (i) either the partial differential equations (2.2) and (2.9) have

to be solved numerically by a computer algebraic program using the initial condition (1.1),

(ii) or one can find the solution of the ordinary differential equations (3.7), (3.8) and (3.9),

(3.10) which are obtained by inserting the ansatz (3.6) into Eqs.(2.2), (2.9). In the lat-

ter case, besides the LPA, we use a further approximation, namely the truncation of the

Fourier expansion of the potential.

According to our experiences concerning the renormalization of SG type models based

on previous publications [25, 14, 15, 22, 33], it is expected that the RG equations obtained

by using the truncated Fourier decomposition of the periodic potential, is always applicable,

except the situation if one would like to decide unambiguously whether SI appears or not

in the RG flow. SI is related to the singularity of the RG flow, consequently, in some cases

it could be important to solve the partial differential (RG) equations without using any

further approximations in order to be able to decide whether SI can be avoided or not.

Since the P–RG method does not take account for SI it is more convenient to use this

method first to consider the IR behavior of the non-compact MFSG model.
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5.1 Polchinski RG approach

Let us first discuss the IR effective theory of the MFSG model in the framework of the

P–RG method by solving Eqs. (3.9), (3.10) numerically with the most general ansatz (3.6).

Qualitatively different IR scaling behaviors of the MFSG model are observed below

and above β2
c = 8π. For β2 > 8π, every Fourier amplitudes are found to be irrelevant in

the limit k → 0, i.e. they are decreasing coupling constants independently of the initial

conditions, see Fig. 1. Consequently, for β2 > 8π, the non-compact MFSG model is a free

massless theory in the IR limit independently of whether the bare initial potential possesses

a Z2 symmetry (Eqs. (3.1), (3.3)) or not (Eq.(3.5)).
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Figure 1: The scaling of the first few Fourier amplitudes of the non-compact MFSG model is

obtained by the P–RG method solving Eqs. (3.9), (3.10) numerically for β2 = 12π with various

initial conditions for the higher harmonics.

A further important result of the RG analysis is that the Fourier amplitudes of the

non-compact MFSG model show up the IR scaling behavior

ũn(k) = fn

(

k

Λ

)n(β2

4π
−2)

, (5.1)

ṽn(k) = gn

(

k

Λ

)n(β2

4π
−2)

, (5.2)

which differs from that obtained in the UV regime, Eqs. (4.3) and (4.4). Here the well-

– 11 –



justified approximations

N
∑

s=1

sA(1)
n,sũs ≈ +

n−1
∑

s=1

s(n − s)2fn−sfs

(

k

Λ

)n(β2

4π
−2)

,

N
∑

s=1

sA(2)
n,sũs ≈ −

n−1
∑

s=1

s(n − s)2gn−sfs

(

k

Λ

)n(β2

4π
−2)

,

N
∑

s=1

sA(3)
n,sṽs ≈ −

n−1
∑

s=1

s(n − s)2fn−sgs

(

k

Λ

)n(β2

4π
−2)

,

N
∑

s=1

sA(4)
n,sṽs ≈ −

n−1
∑

s=1

s(n − s)2gn−sgs

(

k

Λ

)n(β2

4π
−2)

,

result in the following recursion relations for the constants fn and gn,

fn = −
β2

∑n−1
s=1 s(n − s)2(fn−sfs − gn−sgs)

n
[

2 + n
(

β2

4π − 2
)

− β2

4π n2
] , (5.3)

gn = +
β2

∑n−1
s=1 s(n − s)2(gn−sfs + fn−sgs)

n
[

2 + n
(

β2

4π − 2
)

− β2

4πn2
] . (5.4)

Let us note that in case of the fundamental modes (i.e. for n = 1) the UV and IR scalings

coincide. The IR scaling of the model is determined by two independent parameters,

f1 = ũ1(Λ) and g1 = ṽ1(Λ) since for n > 1 the constants fn and gn are fixed by Eqs.(5.3),

(5.4). Therefore, the IR behavior of the model is independent of the initial conditions for

the higher harmonics, see Fig. 1, and depends on either ũ1(Λ) or ṽ1(Λ) if the model has a

Z2 symmetry and in the absence of the reflection symmetry the IR physics is determined

by both ũ1(Λ) and ṽ1(Λ).

For β2 < 8π, one has to distinguish three scaling regimes in case of the non-compact

MFSG model (i) the UV (ii) the IR (iii) and the deep IR scaling behavior, see Fig. 2. The

UV (4.3), (4.4) and the IR (5.1), (5.2) scaling laws are given by the same expressions as

those obtained in the strong coupling phase (β2 > 8π). However, if β2 < 8π, according

to the IR scaling law, every Fourier amplitude becomes relevant (increasing) coupling in

the IR domain. Even more important difference is that a qualitatively new behavior is

found in the deep IR limit (k → 0), namely, at a certain momentum scale kc the Fourier

amplitudes of the non-compact MFSG model become constants, see Fig. 2. Therefore, if

β2 < 8π, the dimensionless IR effective potential of the non-compact model is non-trivial.

Let us analyze the sensitivity of the IR theory on the initial conditions in order to map

out the phase structure. If the bare action has no Z2 symmetry (see Eq.(3.5)) then the deep

IR effective potential depends on a single parameter, namely, the ratio of the initial values

of the fundamental modes, r = ũ1(Λ)/ṽ1(Λ) which remains unchanged during the RG flow,

see Fig. 3. Let us remind that in the strong coupling regime (β2 > 8π) the IR behavior of

the model (without a Z2 symmetry) is determined by two independent parameters (ũ1(Λ)

– 12 –



10
-7

10
-5

10
-3

10
-1

u
n
,
v
n

10
-5

10
-4

10
-3

10
-2

10
-1

1

k/

~
~

~
~
~
~

|u1|
|v1|
|u2|
|v2|

Figure 2: The scaling of the first few Fourier amplitudes of the non-compact MFSG model is

obtained by the P–RG method solving Eqs. (3.9), (3.10) numerically for β2 = 4π with various

initial conditions for the higher harmonics. At the momentum scale kc ∼ 3 × 10−4, the Fourier

amplitudes become constants.

and ṽ1(Λ)). In the presence of Z2 symmetry (see (3.1) for r = ∞ or (3.3) for r = 0), the

deep IR potential is superuniversal, i.e. it is independent of any initial conditions [25, 33].

Again, for β2 > 8π, if the action has a reflection symmetry, the IR scaling is determined

by a single parameter, i.e. the initial value of the fundamental mode, (either ũ1(Λ) or

ṽ1(Λ)). Therefore, the non-compact MFSG model has two phases separated by the

critical value β2
c = 8π. As a consequence of the superuniversal, and universal behavior, no

other phase transition can be identified in the non-compact model.

Finally let us consider the IR behavior of the non-compact MFSG model by solving

directly the P–RG equation (2.9). When the solution of the partial differential equation

(2.9) had been obtained it was expanded in Fourier series. For β2 = 4π the UV, IR and

the deep IR scaling of the first few Fourier amplitudes coincide to that of obtained by the

numerical solution of Eqs. (3.9), (3.10) which are plotted in Fig. 2. Therefore, there is an

excellent quantitative agreement between the results obtained by solving Eqs. (3.9), (3.10)

and by solving Eq.(2.9) directly. This shows that in case of the P–RG method the RG flow

seems to avoid the SI and one can look for the solution of the RG equations in its Fourier

decomposed form.

If one tries to determine the IR behavior of the MFSG model by an RG method, like

the WH–RG approach, which has a singular structure, and consequently, SI could appear

in the RG flow it could be important to solve the partial differential RG equation obtained

in the LPA without using any further approximations in order to be able to decide whether

SI can be avoided or not.
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Figure 3: In this figure we show that the IR effective potential of the non-compact MFSG model

for β2 = 4π depends on only the ratio of the Fourier amplitudes of the fundamental cosine and sine

modes. If the P–RG equation has been solved with various initial conditions for ũ1(Λ) and ṽ1(Λ)

but keeping their ratio fixed, then one obtains the same deep IR behavior.

5.2 Wegner-Houghton RG approach

Let us consider the IR effective theory of the MFSG model in the framework of the WH–

RG method by solving Eqs. (3.7), (3.8) numerically. For β2 > 8π, similarly to the results

obtained by the P–RG method, the Fourier amplitudes are irrelevant in the limit k → 0,

independently of the initial conditions, see Fig. 4. The numerical solution of the WH–RG

equation provides once again the IR scaling laws given by (5.1) and (5.2). Similarly to the

P–RG flow, this IR behavior can also be obtained by using the IR approximations

N
∑

s=1

sA(1)
n,s(2 + k∂k)ũs ≈ +

n−1
∑

s=1

s(n − s)2fn−sfs

[

2 + s

(

β2

4π
− 2

)](

k

Λ

)n(β2

4π
−2)

,

N
∑

s=1

sA(2)
n,s(2 + k∂k)ũs ≈ −

n−1
∑

s=1

s(n − s)2gn−sfs

[

2 + s

(

β2

4π
− 2

)](

k

Λ

)n(β2

4π
−2)

,

N
∑

s=1

sA(3)
n,s(2 + k∂k)ṽs ≈ −

n−1
∑

s=1

s(n − s)2fn−sgs

[

2 + s

(

β2

4π
− 2

)](

k

Λ

)n(β2

4π
−2)

,

N
∑

s=1

sA(4)
n,s(2 + k∂k)ṽs ≈ −

n−1
∑

s=1

s(n − s)2gn−sgs

[

2 + s

(

β2

4π
− 2

)](

k

Λ

)n(β2

4π
−2)

,
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Figure 4: The scaling of the first few Fourier amplitudes of the non-compact MFSG model is

obtained by the WH–RG method solving Eqs. (3.7), (3.8) numerically for β2 = 12π with various

initial conditions for the higher harmonics. The peaks in the scaling of ũ2(k) and ṽ2(k) indicate

the change of their sign during the RG flow.

which result in the recursion relations for fn and gn,

fn = +
β2

∑n−1
s=1 s(n − s)2(fn−sfs − gn−sgs)[1 − s + sβ2

8π ]

n
[

2 + n
(

β2

4π − 2
)

− β2

4π n2
] , (5.5)

gn = −
β2

∑n−1
s=1 s(n − s)2(gn−sfs + fn−sgs)[1 − s + sβ2

8π ]

n
[

2 + n
(

β2

4π − 2
)

− β2

4π n2
] . (5.6)

This shows that the IR scalings of the non-compact MFSG model determined by the P–RG

and the WH–RG methods are qualitatively the same for β2 > 8π. The UV/IR scalings

of the fundamental modes (i.e. for n = 1) coincide, independently of the RG method

used, f1 = ũ1(Λ) and g1 = ṽ1(Λ). The IR constants fn and gn of the higher harmonics

(i.e. n > 1) are determined by the equations (5.5), (5.6) which predict the IR behavior

similar to that obtained by the P–RG method. However, in case of the WH–RG method

the fn, gn parameters have alternating signs for even and odd values of n. Therefore, if

we use the same initial conditions, (e.g. all the bare Fourier amplitudes are positive) then

in case of the WH–RG method, ũ2(k) and ṽ2(k) change their signs during the RG flow,

see Fig. 4. It is important to note that the IR scaling of the model (similarly to the P–RG

method) is determined by two independent parameters (ũ1(Λ), ṽ1(Λ)), if the bare action

has no Z2 symmetry and depends on a single parameter (either ũ1(Λ) or ṽ1(Λ)) in case of

a Z2 symmetric bare action, and it is independent of the initial conditions of the higher

harmonics, see Fig. 4. In conclusion, the WH–RG and the P–RG methods produce the
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same IR behavior for the MFSG model if β2 > 8π.

For β2 < 8π, the IR scaling behavior turns all the Fourier amplitudes into relevant

coupling constants, consequently, the logarithm of the WH–RG equation (2.1) could become

infinite, hence a SI could appear in the WH–RG flow. Indeed, in Fig. 5 the scaling of the

coupling constants of the non-compact MFSG model is presented for β2 = 4π and the

vertical line shows the appearance of SI. Beyond the momentum scale kSI, the WH–RG
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Figure 5: The scaling of the first few Fourier amplitudes of the non-compact MFSG model is

obtained in the framework of the WH–RG method for β2 = 4π by solving numerically either Eqs.

(3.7), (3.8) or Eq. (2.2). In the latter case, the partial differential equation (2.2) is solved by

a computer algebraic code and then the solution is expanded in Fourier series. The vertical line

indicates the momentum scale of SI (kSI) where Eqs. (3.7), (3.8) lose their validity. Above this

scale, kSI < k, the results obtained by Eqs. (3.7), (3.8) and by Eq. (2.2) coincide. Below the scale

of SI, k < kSI, the scaling of the Fourier amplitudes is determined by the direct integration of Eq.

(2.2).

equation loses its validity and one has to use the tree-level RG equation (2.3) which leads to

the IR effective potential (2.4) in the deep IR limit (k → 0). In order to preserve periodicity,

the IR effective potential of the MFSG model has a parabola-shape for φ ∈ [−π/β, π/β]

and such parabola sections are repeated along the φ axis. Let us analyze the sensitivity

of the IR effective theory on the UV initial conditions. In case of a reflection symmetry

φ → −φ, the linear term vanishes in (2.4), i.e. c = 0, and the potential is superuniversal,

i.e. independent of any initial conditions. If the bare action has another type of reflection

symmetry φ → −φ−π/β, then the constant in (2.4) is non-zero but fixed, i.e. c = −π/2β,

consequently, the IR potential is again superuniversal. If the bare action of the MFSG

model has no Z2 symmetry then the deep IR behavior depends on a single parameter

c. Therefore, in the framework of the WH–RG method if SI appears in the RG flow,
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the sensitivity of the IR behavior on the UV parameters is found to be the same as that

obtained by the P–RG approach.

Finally, let us consider the IR scaling of the non-compact MFSG model by solving the

WH–RG equation (2.2) by a computer algebraic code. The solution found is expanded in

Fourier series in order to compare the results to those obtained by Eqs. (3.7), (3.8). For

β2 = 4π the scalings of the first few Fourier amplitudes are plotted in Fig. 5. There is

a quantitative agreement between the results obtained by Eq.(2.2) and Eqs. (3.7), (3.8)

in the UV and IR scaling regimes. However, the important difference is that no SI is

found in the RG flow when Eq.(2.2) is solved directly. This indicates that SI occurs in

the WH–RG approach as an artifact due to the truncated Fourier-expansion applied to the

almost degenerate blocked action of the MFSG model, at least for β2 = 4π. On the other

hand, it seems to support the Quantum Censorship conjecture to be at work in the MFSG

model as well [41]. Let us emphasize that independently of whether the blocked action

becomes degenerate or not, the sensitivity of the deep IR behavior of the MFSG model on

the UV initial parameters is found to be the same. Consequently, the phase structure of

the non-compact MFSG model is determined unambiguously and independently of the RG

method used.

Let us note that if Quantum Censorship is really on work, then the WH–RG (2.2) and

P–RG (2.9) partial differential equations and also their Fourier expanded forms, Eqs. (3.7),

(3.8) and Eqs. (3.9), (3.10) retain their validity in the deep IR regime. When there the

Fourier amplitudes take constant values at some momentum scale kc, i.e. ∂kṼ(k<kc) = 0

or ∂kũn(k < kc) = 0, ∂kṽn(k < kc) = 0 hold, then Eqs. (3.7), (3.8) and Eqs. (3.9),

(3.10) reduce to the same recursion equations except the sign of the non-linear term.

Consequently, in the IR limit k → 0 the WH–RG and the P–RG methods result in the

same absolute values of the couplings |ũn(0)| and |ṽn(0)| of the MFSG model.

6. Summary

In this paper we considered how the compactness of the field influences the renormaliza-

tion and, consequently, the low-energy behavior of the theory. In particular, we compared

the high-energy/UV and low-energy/IR behaviors of the two-dimensional multi-frequency

sine–Gordon (MFSG) scalar field model defined by compact and non-compact field vari-

ables. We studied the renormalization of the MFSG model with a non-compact field in the

framework of the functional renormalization group (RG) method using the local potential

approximation (LPA), discussing the comparison with the results for the compact double-

and multi- frequency sine Gordon.

We showed that the UV scaling of the compact and the non-compact MFSG models

coincides but their IR behaviors are different. In the UV limit, the quantum fluctuations

(with high frequency and small amplitude) do not feel the difference between the models

defined by compact and non-compact fields but different behaviours are expected to appear

in the IR limit due to the large-amplitude quantum fluctuations of the IR domain. On

the one hand the critical frequency β2
c = 8π at which the sine-Gordon model undergoes

a topological phase transition is found to be unaffected by the compactness of the field
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since it is determined by the UV scaling laws. On the other hand, while it is known that

the compact model has first and second order (Ising) type phase transitions which are

determined by the IR scaling, we showed that these are absent in the non-compact model.

Indeed, the IR effective potential of the non-compact MFSG model was found to be

different above and below β2
c = 8π. For β2 > 8π, the deep IR behavior of the non-compact

MFSG model with Z2 symmetry (i.e. φ → −φ or φ → −π/β−φ) depends on the UV initial

condition for either the fundamental cosine or the fundamental sine mode, respectively,

and for β2 < 8π it is superuniversal, i.e. independent of any initial conditions. If the non-

compact MFSG model has no Z2 symmetry, for β2 > 8π the IR effective potential depends

on the UV initial conditions both for the fundamental cosine and sine modes (i.e. it depends

on two independent parameters) and for β2 < 8π it is universal, i.e. depends on only a

single parameter, namely the ratio ũ1(Λ)/ṽ1(Λ). Consequently, due to the superuniversal

and universal IR behavior of the non-compact MFSG model, there is no room for first or

second order phase transitions for β2 < 8π.

These results were obtained by the functional renormalization group analysis of the

non-compact MFSG model in the framework of the Polchinski and the Wegner–Houghton

RG methods where the latter is mathematically equivalent to the effective average action

RG with the power-law regulator (b = 1) and the functional Callan-Symanzik RG equa-

tion. The RG flow of the non-compact MFSG model was determined in two different ways

(i) either the RG equations obtained in the LPA were solved numerically by a computer

algebraic code and then the solution expanded in Fourier series, (ii) or first the RG equa-

tions were derived for the Fourier amplitudes and then those solved numerically. In the

latter case, it was unavoidable to implement a further approximation besides the LPA,

namely the truncation of the Fourier expansion of the potential. The sensitivity of the IR

effective potential on the UV initial conditions, and consequently, the phase structure was

found to be the same in both cases. Moreover, except the situation where the RG flow

has a singularity, i.e. a spinodal instability (SI) appears in the IR limit, the scaling of

the Fourier amplitudes obtained in the above mentioned two different ways, coincide. For

β2 < 8π, in case of the non-compact MFSG model a momentum scale was generated by the

RG transformation in the deep IR regime (either the scale where the Fourier amplitudes

become constants or the scale of SI). Below this momentum scale, the theory becomes

superuniversal (if it has a Z2 symmetry) or universal (if it has no Z2 symmetry).

Finally, the classification of the IR scaling operators into relevant, marginal or irrele-

vant ones was also found to be different in case of the compact and the non-compact MFSG

models. For the compact model, one can rely on the UV results even in the IR limit but

for the non-compact case new types of scaling laws were observed in the IR domain which

modify the classification of the scaling operators.
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The project is implemented through the New Hungary Development Plan co-financed by

– 18 –



the European Social Fund, and the European Regional Development Fund. A.T. acknowl-

edges support by the grants INSTANS (from ESF) and 2007JHLPEZ (from MIUR).

References

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, (University Press, Oxford,

1996).

[2] G. Mussardo, Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical

Physics, (University Press, Oxford, 2009).

[3] G. Delfino, G. Mussardo, Nucl. Phys. B 516, 675 (1998).

[4] M. Fabrizio, A.O. Gogolin, A.A. Nersesyan, Nucl. Phys. B 580, 647 (2000).
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[9] G. Takács and F. Wágner, Nucl. Phys. B 741, 353 (2006).

[10] J. Comellas, Nucl. Phys. B 509, 662 (1998); M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998);

D. F. Litim, J. Pawlowski, in The Exact Renormalization Group, ed. Krasnitz et al. (World

Scientific, Singapore, 1999), p. 168; C. Bagnuls, C Bervillier, Phys. Rep. 348, 91 (2001); J.

Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002); J. Polonyi, Central Eur. J.

Phys. 1, 1 (2004); J. Pawlowski, Ann. Phys. 322 2831 (2007); H. Gies, e-print:

hep-ph/0611146; B. Delamotte, arXiv:cond-mat/0702365; O. J. Rosten, arXiv:1003.1366

[hep-th].

[11] A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems,

(University Press, Cambridge, 1998).

[12] S.R. Coleman, Phys. Rev. D 11, 2088 (1975). D. Amit, Y.Y. Goldschmidt, G. Grinstein, J.

Phys. A 13, 585 (1980); K. Huang, J. Polonyi, Int. J. Mod. Phys. 6, 409 (1991); Al. B.

Zamolodchikov, Int. J. Mod. Phys. A 10, 1125 (1995); J. Balogh and A. Hegedűs, J. Phys. A
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