844 research outputs found
Whole-Slide Image Analysis of Human Pancreas Samples to Elucidate the Immunopathogenesis of Type 1 Diabetes Using the QuPath Software
Type 1 diabetes is a chronic disease of the pancreas characterized by the loss of insulin-producing beta cells. Access to human pancreas samples for research purposes has been historically limited, restricting pathological analyses to animal models. However, intrinsic differences between animals and humans have made clinical translation very challenging. Recently, human pancreas samples have become available through several biobanks worldwide, and this has opened numerous opportunities for scientific discovery. In addition, the use of new imaging technologies has unraveled many mysteries of the human pancreas not merely in the presence of disease, but also in physiological conditions. Nowadays, multiplex immunofluorescence protocols as well as sophisticated image analysis tools can be employed. Here, we described the use of QuPath—an open-source platform for image analysis—for the investigation of human pancreas samples. We demonstrate that QuPath can be adequately used to analyze whole-slide images with the aim of identifying the islets of Langerhans and define their cellular composition as well as other basic morphological characteristics. In addition, we show that QuPath can identify immune cell populations in the exocrine tissue and islets of Langerhans, accurately localizing and quantifying immune infiltrates in the pancreas. Therefore, we present a tool and analysis pipeline that allows for the accurate characterization of the human pancreas, enabling the study of the anatomical and physiological changes underlying pancreatic diseases such as type 1 diabetes. The standardization and implementation of these analysis tools is of critical importance to understand disease pathogenesis, and may be informative for the design of new therapies aimed at preserving beta cell function and halting the inflammation caused by the immune attack
Use of aequorin-based indicators for monitoring Ca2+ in acidic organelles
Producción CientíficaOver the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.Ministerio de Ciencia e Innovación (PID2020-116086RB-I00 )Junta de Castilla y León (Ref. CLU- 2019-02)Biotechnology and Biological Sciences Research Council, Reino Unido (BB/T015853/1 y BB/W01551X/1
A novel procedure for protein extraction from formalin-fixed paraffin-embedded tissues
Most of the archived pathological specimens in hospitals are kept as formalin-fixed paraffin-embedded tissues (FFPE) for long-term preservation. Up to now, these samples are only used for immunohistochemistry in a clinical routine as it is difficult to recover intact protein from these FFPE tissues. Here, we report a novel, short time-consuming and cost-effective method to extract full-length, non-degraded proteins from FFPE tissues. This procedure is combined with an effective and non-toxic deparaffinisation process and an extraction method based on antigen-retrieval, high concentration of SDS and high temperature. We have obtained enough intact protein to be detected by Western blotting analysis. This technique will allow utilising these stored FFPE tissues in several applications for protein analysis helping to advance the translational studies in cancer and other diseases
Cost Effective Use of a Thiosulfinate-Enriched Allium sativum Extract in Combination with Chemotherapy in Colon Cancer
In this work, we sought to investigate the effects of a thiosulfinate-enriched garlic extract, co-administered with 5-fluorouracil (5-FU) or oxaliplatin chemotherapy, on the viability of colon cancer cells (Caco-2 and HT-29). We also addressed the economic feasibility of a new combined treatment of this thiosulfinate-enriched garlic extract, with oxaliplatin that could reduce the dosage and costs of a monotherapy. The thiosulfinate-enriched garlic extract not only enhanced the impact of 5-FU and oxaliplatin (500 µM) in decreasing Caco-2 and HT-29 viability, but also showed a higher effect than standard 5-FU and oxaliplatin chemotherapy as anti-cancer agents. These results provided evidences for the combination of lyophilized garlic extract and 5-FU or oxaliplatin as a novel chemotherapy regimen in colon cancer cells that may also reduce the clinical therapy costs.En este trabajo, buscamos investigar los efectos de un extracto de ajo enriquecido con tiosulfinato, coadministrado con quimioterapia con 5-fluorouracilo (5-FU) u oxaliplatino, sobre la viabilidad de las células de cáncer de colon (Caco-2 y HT-29). . También abordamos la viabilidad económica de un nuevo tratamiento combinado de este extracto de ajo enriquecido con tiosulfinato, con oxaliplatino que podría reducir la dosis y los costes de una monoterapia. El extracto de ajo enriquecido con tiosulfinato no solo mejoró el impacto del 5-FU y el oxaliplatino (500 µM) en la disminución de la viabilidad de Caco-2 y HT-29, sino que también mostró un efecto mayor que el 5-FU estándar y la quimioterapia con oxaliplatino como anticancerígeno agentes
Incidence, clinical characteristics, risk factors and outcomes of meningoencephalitis in patients with COVID-19
We investigated the incidence, clinical characteristics, risk factors, and outcome of meningoencephalitis (ME) in patients with COVID-19 attending emergency departments (ED), before hospitalization. We retrospectively reviewed all COVID patients diagnosed with ME in 61 Spanish EDs (20% of Spanish EDs, COVID-ME) during the COVID pandemic. We formed two control groups: non-COVID patients with ME (non-COVID-ME) and COVID patients without ME (COVID-non-ME). Unadjusted comparisons between cases and controls were performed regarding 57 baseline and clinical characteristics and 4 outcomes. Cerebrospinal fluid (CSF) biochemical and serologic findings of COVID-ME and non-COVID-ME were also investigated. We identified 29 ME in 71,904 patients with COVID-19 attending EDs (0.40‰, 95%CI=0.27-0.58). This incidence was higher than that observed in non-COVID patients (150/1,358,134, 0.11‰, 95%CI=0.09-0.13; OR=3.65, 95%CI=2.45-5.44). With respect to non-COVID-ME, COVID-ME more frequently had dyspnea and chest X-ray abnormalities, and neck stiffness was less frequent (OR=0.3, 95%CI=0.1-0.9). In 69.0% of COVID-ME, CSF cells were predominantly lymphocytes, and SARS-CoV-2 antigen was detected by RT-PCR in 1 patient. The clinical characteristics associated with a higher risk of presenting ME in COVID patients were vomiting (OR=3.7, 95%CI=1.4-10.2), headache (OR=24.7, 95%CI=10.2-60.1), and altered mental status (OR=12.9, 95%CI=6.6-25.0). COVID-ME patients had a higher in-hospital mortality than non-COVID-ME patients (OR=2.26; 95%CI=1.04-4.48), and a higher need for hospitalization (OR=8.02; 95%CI=1.19-66.7) and intensive care admission (OR=5.89; 95%CI=3.12-11.14) than COVID-non-ME patients. ME is an unusual form of COVID presentation (<0.5‰ cases), but is more than 4-fold more frequent than in non-COVID patients attending the ED. As the majority of these MEs had lymphocytic predominance and in one patient SARS-CoV-2 antigen was detected in CSF, SARS-CoV-2 could be the cause of most of the cases observed. COVID-ME patients had a higher unadjusted in-hospital mortality than non-COVID-ME patients
Guía de buenas prácticas para la documentación, conservación-restauración y difusión de trazados de arquitectura, monteas y grafitos históricos en el patrimonio monumental
[ES] La presente guía se ha elaborado con el objeto de compilar y dar a conocer las inquietudes, propuestas y alternativas surgidas en el desarrollo del seminario titulado «Conservación de trazados, monteas y grafitos históricos en el patrimonio monumental», celebrado los días 27, 28 y 29 de abril de 2022 en la Escuela de Patrimonio Histórico de Nájera (La Rioja), formando parte de las actividades formativas programadas por el Instituto del Patrimonio Cultural de España (IPCE).Instituto del Patrimonio Cultural de España (IPCE
A correlative biomarker study and integrative prognostic model in chemotherapy-naïve metastatic castration-resistant prostate cancer treated with enzalutamide
There is a considerable need to incorporate biomarkers of resistance to new antiandrogen agents in the management of castration-resistant prostate cancer (CRPC). We conducted a phase II trial of enzalutamide in first-line chemo-naïve asymptomatic or minimally symptomatic mCRPC and analyzed the prognostic value of TMPRSS2-ERG and other biomarkers, including circulating tumor cells (CTCs), androgen receptor splice variant (AR-V7) in CTCs and plasma Androgen Receptor copy number gain (AR-gain). These biomarkers were correlated with treatment response and survival outcomes and developed a clinical-molecular prognostic model using penalized cox-proportional hazard model. This model was validated in an independent cohort. Ninety-eight patients were included. TMPRSS2-ERG fusion gene was detected in 32 patients with no differences observed in efficacy outcomes. CTC detection was associated with worse outcome and AR-V7 in CTCs was associated with increased rate of progression as best response. Plasma AR gain was strongly associated with an adverse outcome, with worse median prostate specific antigen (PSA)-PFS (4.2 vs. 14.7 m; p < 0.0001), rad-PFS (4.5 vs. 27.6 m; p < 0.0001), and OS (12.7 vs. 38.1 m; p < 0.0001). The clinical prognostic model developed in PREVAIL was validated (C-Index 0.70) and the addition of plasma AR (C-Index 0.79; p < 0.001) increased its prognostic ability. We generated a parsimonious model including alkaline phosphatase (ALP); PSA and AR gain (C-index 0.78) that was validated in an independent cohort. TMPRSS2-ERG detection did not correlate with differential activity of enzalutamide in first-line mCRPC. However, we observed that CTCs and plasma AR gain were the most relevant biomarkers
Overview of recent TJ-II stellarator results
The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F
Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases
Altres ajuts: Generalitat de Catalunya, Departament de Salut; Generalitat de Catalunya, Departament d'Empresa i Coneixement i CERCA Program; Ministerio de Ciencia e Innovación; Instituto Nacional de Bioinformática; ELIXIR Implementation Studies (CNAG-CRG); Centro de Investigaciones Biomédicas en Red de Enfermedades Raras; Centro de Excelencia Severo Ochoa; European Regional Development Fund (FEDER).Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%)
- …