8,575 research outputs found
Quantum Non-Demolition Detection of Strongly Correlated Systems
Preparation, manipulation, and detection of strongly correlated states of
quantum many body systems are among the most important goals and challenges of
modern physics. Ultracold atoms offer an unprecedented playground for
realization of these goals. Here we show how strongly correlated states of
ultracold atoms can be detected in a quantum non-demolition scheme, that is, in
the fundamentally least destructive way permitted by quantum mechanics. In our
method, spatially resolved components of atomic spins couple to quantum
polarization degrees of freedom of light. In this way quantum correlations of
matter are faithfully mapped on those of light; the latter can then be
efficiently measured using homodyne detection. We illustrate the power of such
spatially resolved quantum noise limited polarization measurement by applying
it to detect various standard and "exotic" types of antiferromagnetic order in
lattice systems and by indicating the feasibility of detection of superfluid
order in Fermi liquids.Comment: Published versio
Optogenetics and deep brain stimulation neurotechnologies
Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders
Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed
Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection
Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model
Seeking legitimacy through CSR: Institutional Pressures and Corporate Responses of Multinationals in Sri Lanka
Arguably, the corporate social responsibility (CSR) practices of multinational enterprises (MNEs) are influenced by a wide range of both internal and external factors. Perhaps most critical among the exogenous forces operating on MNEs are those exerted by state and other key institutional actors in host countries. Crucially, academic research conducted to date offers little data about how MNEs use their CSR activities to strategically manage their relationship with those actors in order to gain legitimisation advantages in host countries. This paper addresses that gap by exploring interactions between external institutional pressures and firm-level CSR activities, which take the form of community initiatives, to examine how MNEs develop their legitimacy-seeking policies and practices. In focusing on a developing country, Sri Lanka, this paper provides valuable insights into how MNEs instrumentally utilise community initiatives in a country where relationship-building with governmental and other powerful non-governmental actors can be vitally important for the long-term viability of the business. Drawing on neo-institutional theory and CSR literature, this paper examines and contributes to the embryonic but emerging debate about the instrumental and political implications of CSR. The evidence presented and discussed here reveals the extent to which, and the reasons why, MNEs engage in complex legitimacy-seeking relationships with Sri Lankan institutions
Magnetism and its microscopic origin in iron-based high-temperature superconductors
High-temperature superconductivity in the iron-based materials emerges from,
or sometimes coexists with, their metallic or insulating parent compound
states. This is surprising since these undoped states display dramatically
different antiferromagnetic (AF) spin arrangements and Nel
temperatures. Although there is general consensus that magnetic interactions
are important for superconductivity, much is still unknown concerning the
microscopic origin of the magnetic states. In this review, progress in this
area is summarized, focusing on recent experimental and theoretical results and
discussing their microscopic implications. It is concluded that the parent
compounds are in a state that is more complex than implied by a simple Fermi
surface nesting scenario, and a dual description including both itinerant and
localized degrees of freedom is needed to properly describe these fascinating
materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in
Nature Physic
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study
Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state
The significance of macrophage phenotype in cancer and biomaterials
Macrophages have long been known to exhibit heterogeneous and plastic phenotypes. They show functional diversity with roles in homeostasis, tissue repair, immunity and disease. There exists a spectrum of macrophage phenotypes with varied effector functions, molecular determinants, cytokine and chemokine profiles, as well as receptor expression. In tumor microenvironments, the subset of macrophages known as tumor-associated macrophages generates byproducts that enhance tumor growth and angiogenesis, making them attractive targets for anti-cancer therapeutics. With respect to wound healing and the foreign body response, there is a necessity for balance between pro-inflammatory, wound healing, and regulatory macrophages in order to achieve successful implantation of a scaffold for tissue engineering. In this review, we discuss the multitude of ways macrophages are known to be important in cancer therapies and implanted biomaterials
p-wave Holographic Superconductors and five-dimensional gauged Supergravity
We explore five-dimensional and
SO(6) gauged supergravities as frameworks for condensed matter applications.
These theories contain charged (dilatonic) black holes and 2-forms which have
non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question
of interest is whether they also contain black holes with two-form hair with
the required asymptotic to give rise to holographic superconductivity. We first
consider the case, which contains a complex two-form potential
which has U(1) charge . We find that a slight
generalization, where the two-form potential has an arbitrary charge , leads
to a five-dimensional model that exhibits second-order superconducting
transitions of p-wave type where the role of order parameter is played by
, provided . We identify the operator that condenses
in the dual CFT, which is closely related to Super Yang-Mills
theory with chemical potentials. Similar phase transitions between R-charged
black holes and black holes with 2-form hair are found in a generalized version
of the gauged supergravity Lagrangian where the two-forms have
charge .Comment: 35 pages, 14 figure
- …
