757 research outputs found

    Magnetic Hamiltonian and phase diagram of the quantum spin liquid Ca10Cr7O28

    Get PDF
    A spin liquid is a new state of matter with topological order where the spin moments continue to fluctuate coherently down to the lowest temperatures rather than develop static long range magnetic order as found in conventional magnets. For spin liquid behavior to arise in a material the magnetic Hamiltonian must be frustrated , where the combination of lattice geometry, interactions, and anisotropies gives rise to competing spin arrangements in the ground state. Theoretical Hamiltonians which produce spin liquids are spin ice, the Kitaev honeycomb model, and the kagome antiferromagnet. Spin liquid behavior, however, in real materials is rare because they can only approximate these Hamiltonians and often have weak higher order terms that destroy the spin liquid state. Ca10Cr7O28 is a new quantum spin liquid candidate with magnetic Cr5 ions that possess quantum spin number S . The spins are entirely dynamic in the ground state and the excitation spectrum is broad and diffuse, as is typical of spinons which are the excitations of a spin liquid. In this paper we determine the Hamiltonian of Ca10Cr7O28 using inelastic neutron scattering under high magnetic field to induce a field polarized paramagnetic ground state and spin wave excitations that can be fitted to extract the interactions. We further explore the phase diagram by using inelastic neutron scattering and heat capacity measurements and establish the boundaries of the spin liquid phase as a function of magnetic field and temperature. Our results show that Ca10Cr7O28 consists of distorted kagome bilayers with several isotropic ferromagnetic and antiferromagnetic interactions where, unexpectedly, the ferromagnetic interactions are stronger than the antiferromagnetic ones. This complex Hamiltonian does not correspond to any known spin liquid model and points to new directions in the search for quantum spin liquid behavio

    The Dallol Geothermal Area, Northern Afar (Ethiopia) — An Exceptional Planetary Field Analog on Earth

    Get PDF
    The Dallol volcano and its associated hydrothermal field are located in a remote area of the northern Danakil Depression in Ethiopia, a region only recently appraised after decades of inaccessibility due to severe political instability and the absence of infrastructure. The region is notable for hosting environments at the very edge of natural physical-chemical extremities. It is surrounded by a wide, hyperarid salt plain and is one of the hottest (average annual temperatureDallol: 36–38°C) and most acidic natural system (pHDallol ≈0) on Earth. Spectacular geomorphologies and mineral deposits produced by supersaturated hydrothermal waters and brines are the result of complex interactions between active and inactive hydrothermal alteration of the bedrock, sulfuric hot springs and pools, fumaroles and geysers, and recrystallization processes driven by hydrothermal waters, degassing, and rapid evaporation. The study of planetary field analog environments plays a crucial role in characterizing the physical and chemical boundaries within which life can exist on Earth and other planets. It is essential for the definition and assessment of the conditions of habitability on other planets, including the possibility for biosignature preservation and in situ testing of technologies for life detection. The Dallol area represents an excellent Mars analog environment given that the active volcanic environment, the associated diffuse hydrothermalism and hydrothermal alteration, and the vast acidic sulfate deposits are reminiscent of past hydrothermal activity on Mars. The work presented in this paper is an overview of the Dallol volcanic area and its hydrothermal field that integrates previous literature with observations and results obtained from field surveys and monitoring coupled with sample characterization. In so doing, we highlight its exceptional potential as a planetary field analog as well as a site for future astrobiological and exploration programs

    Hard Photodisintegration of a Proton Pair

    Get PDF
    We present a study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s-11 scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration.Comment: 7 pages, 3 figures, for submission to Phys. Lett.

    Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke

    Get PDF
    In light of the limited repertoire of therapeutical options available for the treatment of ischaemic stroke, the identification of novel potential targets is vital; in this respect, the present study demonstrates that the adaptor protein p66Shc holds this potential as an adjunct therapy to thrombolysis. Post-ischaemic silencing of p66Shc protein yielded beneficial effects in a mouse model of I/R brain injury underlying an interesting translational perspective for this target protein. Further, in proof-of-principle clinical experiments using PBMs, we demonstrate that p66Shc gene expression is transiently increased and that its levels correlate to short-term outcome in ischaemic stroke patients. Although these latter experiments are not directly relevant to the experiments performed in mice and in human endothelial cells, they provide novel important information about p66Shc regulation in stroke patients and set the basis for further investigations aimed at assessing the potential for p66Shc to become a novel therapeutic target as an adjunct of thrombolysis for the management of acute ischaemic strok

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    A role for XRCC2 gene polymorphisms in breast cancer risk and survival

    Get PDF
    Background The XRCC2 gene is a key mediator in the homologous recombination repair of DNA double strand breaks. It is hypothesised that inherited variants in the XRCC2 gene might also affect susceptibility to, and survival from, breast cancer. Methods The study genotyped 12 XRCC2 tagging single nucleotide polymorphisms (SNPs) in 1131 breast cancer cases and 1148 controls from the Sheffield Breast Cancer Study (SBCS), and examined their associations with breast cancer risk and survival by estimating ORs and HRs, and their corresponding 95% CIs. Positive findings were further investigated in 860 cases and 869 controls from the Utah Breast Cancer Study (UBCS) and jointly analysed together with available published data for breast cancer risk. The survival findings were further confirmed in studies (8074 cases) from the Breast Cancer Association Consortium (BCAC). Results The most significant association with breast cancer risk in the SBCS dataset was the XRCC2 rs3218408 SNP (recessive model p=2.3×10−4, minor allele frequency (MAF)=0.23). This SNP yielded an ORrec of 1.64 (95% CI 1.25 to 2.16) in a two-site analysis of SBCS and UBCS, and a meta-ORrec of 1.33 (95% CI 1.12 to 1.57) when all published data were included. This SNP may mark a rare risk haplotype carried by two in 1000 of the control population. Furthermore, the XRCC2 coding R188H SNP (rs3218536, MAF=0.08) was significantly associated with poor survival, with an increased per-allele HR of 1.58 (95% CI 1.01 to 2.49) in a multivariate analysis. This effect was still evident in a pooled meta-analysis of 8781 breast cancer patients from the BCAC (HR 1.19, 95% CI 1.05 to 1.36; p=0.01). Conclusions These findings suggest that XRCC2 SNPs may influence breast cancer risk and survival

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK
    corecore