15 research outputs found

    The Power of the Learning Community Model for the Development of Supervisor/Mentor

    Get PDF
    The article describes how learning communities, or communities of practice, are "groups of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly." How theological field educators share three distinguishing characteristics of a community of practice: domain, community, and practice

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Patagonian blenny (Eleginops maclovinus) spermatozoa quality after storage at 4 degrees C in Cortland medium

    No full text
    Patagonian blenny (E. maclovinus) is a marine species recently placed in captivity and which are potentially farmable. Understanding and improving its sperm capacity to withstand short-term storage conditions is a key element of initiating an artificial propagation program for this species. The aim of this study is to evaluate the ultrastructure and quality of E. maclovinus sperm during refrigerated storage. To address this objective, scanning electron microscopy (SEM), cytofluorimetric analysis (membrane integrity; reactive oxygen species generation; mitochondrial membrane potential) and cell respiration/mitochondrial-function analysis (ATP content; oxygen consumption) could be useful for optimizing or improving management for artificial reproduction of this species. Severe damage of plasma membranes was observed by SEM at day 7 and 14 of in vitro storage. Analyses of sperm quality were conducted during the 14-day cold storage period when sperm were in diluted (with Cortland solution) and undiluted conditions. When there were diluted conditions, there was greater preservation of motile capacity (from day-7; P < 0.05), membrane integrity (from day-7; P < 0.05), mitochondrial membrane potential (from day-10; P < 0.05) and ATP stores (from day-3; P < 0.05). Oxygen consumption indicators were 18.6% +/- 14.7% greater in the undiluted samples from day-3, and 32.1% +/- 2.1% of the total spermatozoa had ample amounts of superoxide anion in both undiluted and diluted semen on day-0. The use of Cortland solution extended the viability of sperm when there were longer storage times. Factors that have a greater effect on the quality of semen during storage are reactive oxygen species generation and ATP depletion. In conclusion, Patagonian blenny spermatozoa can be stored at 4 degrees C between 7 and 10 days using Cortland solution

    Effects of cryopreservation on cAMP-dependent protein kinase and AMP-activated protein kinase in Atlantic salmon (Salmo salar) spermatozoa: Relation with post-thaw motility

    No full text
    Sperm motility in fish with external fertilization is critical for reproductive efficiency in aquaculture, especially in salmonids. Gamete preservation techniques, such as cryopreservation, however, reduce sperm motility and fertilizing capacity. Very few studies have addressed cryodamage from energetic and cell signalling approaches. In this study, cAMP-dependent protein kinase (PKA) and AMP-activated kinase (AMPK) activities were quantified in fresh and cryopreserved spermatozoa of Atlantic salmon (Salmo salar); and the relation with motility was analysed. Results indicate there was a decrease in membrane integrity and motility in post-thawed spermatozoa compared to fresh samples, however, there was about 30% of cells with intact plasma membrane but incapable of motility. The PKA and AMPK activities were less after cryopreservation, indicating that loss of motility may be related to alteration of these key enzymes. Furthermore, PKA and AMPK activities were positively correlated with each other and with motility; and inhibition decreased motility, indicating there is a functional relationship between PKA and AMPK. The PKA inhibition also decreased AMPK activity, but results from protein-protein docking analyses indicated AMPK activation directly by PKA is unlikely, thus an indirect mechanism may exist. There have been no previous reports of these kinase actions in fish spermatozoa, making these findings worthy of assessment when there are future studies being planned, and may serve as base knowledge for optimization of cryopreservation procedures and development of biotechnologies to improve reproduction efficiency in the aquaculture industry

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Abstracts of the 6th FECS Conference 1998 Lectures

    No full text
    International audienc
    corecore