28 research outputs found

    Strategies for tropical forest protection and sustainable supply chains: challenges and opportunities for alignment with the UN sustainable development goals

    Get PDF
    Governance for sustainable development increasingly involves diverse stakeholder groups, with the promise of enhanced legitimacy and effectiveness in decision-making and implementation. The UN sustainable development goals (SDGs) emphasise the important role of multiple (non-state) actors, including businesses and non-governmental organisations, including in efforts to ensure the sustainability of supply chains, and to reduce tropical deforestation and forest degradation. This paper critically analyses sustainability strategies to examine how the UN SDG agendas related to ‘sustainable supply chains’ and ‘tropical forest protection’ are framed and enacted by two contrasting non-state actors: (1) Instituto Centro de Vida (ICV), an NGO in Brazil working to address deforestation, including by supporting farmers to produce commodities, and (2) Unilever, a global consumer goods manufacturer and major buyer of such commodities. By identifying areas of variability in the discursive techniques used by ICV and Unilever, we unearth particular power dynamics that can shape the processes and outcomes of sustainability strategies. This paper finds that the two organisations use diverse strategies at different levels of governance, both participate actively in multi-stakeholder forums to advance their organisations’ goals, but have divergent framings of ‘sustainability’. Despite being considered ‘non-state’ actors, the strategies of the two organisations examined both reflect, and influence, the structural effects of the state in the implementation of non-state organisations’ strategies, and progress towards the SDGs. Although there is alignment of certain strategies related to tropical forest protection, in some cases, there is a risk that more sustainable, alternative approaches to governing forests and supply chains may be excluded

    A Deep Insight into the Sialome of Rhodnius neglectus, a vector of chagas disease

    Get PDF
    Background Triatomines are hematophagous insects that act as vectors of Chagas disease. Rhodnius neglectus is one of these kissing bugs found, contributing to the transmission of this American trypanosomiasis. The saliva of hematophagous arthropods contains bioactive molecules responsible for counteracting host haemostatic, inflammatory, and immuneresponses. Methods/Principal Findings Next generation sequencing and mass spectrometry-based protein identification were performed to investigate the content of triatomine R. neglectus saliva.We deposited 4,230 coding DNA sequences (CDS) in GenBank. A set of 636 CDS of proteins of putative secretory nature was extracted from the assembled reads, 73 of them confirmed by proteomic analysis. The sialome of R. neglectus was characterized and serine protease transcripts detected. The presence of ubiquitous protein families was revealed, including lipocalins, serine protease inhibitors, and antigen-5. Metalloproteases, disintegrins, and odorant binding protein families were less abundant. Conclusions/Significance The data presented improve our understanding of hematophagous arthropod sialomes, and aid in understanding hematophagy and the complex interplay among vectors and their vertebrate hosts

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest

    Get PDF
    Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    Re-evaluation of the generic status of Athenaea and Aureliana (Withaniinae, Solanaceae) based on molecular phylogeny and morphology of the calyx

    No full text
    Subtribe Withaniinae (Solanaceae) comprises seven genera and c. 40 species, with an almost cosmopolitan distribution. Athenaea and Aureliana are exclusively South American, with diversity centres in the Brazilian Atlantic Rainforest. The generic status of Athenaea and Aureliana was investigated using molecular phylogenetic analysis of five plastid regions (ndhF gene, trnL intron and trnL-trnF, psaI-accD and trnC-ycf6 intergenic spacers), nuclear internal transcribed spacers (ITS) and morphometric analysis of the calyx. Divergence time estimates were also performed. Withaniinae was recovered as monophyletic. The diversification time estimated for Withaniinae was 6.3 Myr, and the estimated diversification time for the Athenaea and Aureliana clades was 2.3 Myr. Athenaea and Aureliana species formed a strongly supported clade. However, the genera were not monophyletic, and support for internal relationships was moderate to weak. The morphometric analysis of the increasing size of the fruit calyx that included all species of the genera showed a cline that did not allow us to conclude that the species could be separated into two genera. Because the accrescent calyx is the only morphological character that distinguishes them, we recognize Athenaea as a synonym of Aureliana and propose five new combinations. The list of accepted species is presented

    Re-evaluation of the generic status of Athenaea and Aureliana (Withaniinae, Solanaceae) based on molecular phylogeny and morphology of the calyx

    No full text
    Subtribe Withaniinae (Solanaceae) comprises seven genera and c. 40 species, with an almost cosmopolitan distribution. Athenaea and Aureliana are exclusively South American, with diversity centres in the Brazilian Atlantic Rainforest. The generic status of Athenaea and Aureliana was investigated using molecular phylogenetic analysis of five plastid regions (ndhF gene, trnL intron and trnL-trnF, psaI-accD and trnC-ycf6 intergenic spacers), nuclear internal transcribed spacers (ITS) and morphometric analysis of the calyx. Divergence time estimates were also performed. Withaniinae was recovered as monophyletic. The diversification time estimated for Withaniinae was 6.3 Myr, and the estimated diversification time for the Athenaea and Aureliana clades was 2.3 Myr. Athenaea and Aureliana species formed a strongly supported clade. However, the genera were not monophyletic, and support for internal relationships was moderate to weak. The morphometric analysis of the increasing size of the fruit calyx that included all species of the genera showed a cline that did not allow us to conclude that the species could be separated into two genera. Because the accrescent calyx is the only morphological character that distinguishes them, we recognize Athenaea as a synonym of Aureliana and propose five new combinations. The list of accepted species is presented
    corecore