75 research outputs found

    Application of Generalized Additive Models to the Evaluation of Continuous Markers for Classification Purposes

    Get PDF
    Background: Receiver operating characteristic (ROC) curve and derived measures as the Area Under the Curve (AUC) are often used for evaluating the discriminatory capability of a continuous biomarker in distinguishing between alternative states of health. However, if the marker shows an irregular distribution, with a dominance of diseased subjects in noncontiguous regions, classification using a single cutpoint is not appropriate, and it would lead to erroneous conclusions. This study sought to describe a procedure for improving the discriminatory capacity of a continuous biomarker, by using generalized additive models (GAMs) for binary data.Methods: A new classification rule is obtained by using logistic GAM regression models to transform the original biomarker, with the predicted probabilities being the new transformed continuous biomarker. We propose using this transformed biomarker to establish optimal cut-offs or intervals on which to base the classification. This methodology is applied to different controlled scenarios, and to real data from a prospective study of patients undergoing surgery at a University Teaching Hospital, for examining plasma glucose as postoperative infection biomarker.Results: Both, theoretical scenarios and real data results show that when the risk marker-disease relationship is not monotone, using the new transformed biomarker entails an improvement in discriminatory capacity. Moreover, in these situations, an optimal interval seems more reasonable than a single cutpoint to define lower and higher disease-risk categories.Conclusions: Using statistical tools which allow for greater flexibility (e.g., GAMs) can optimize the classificatory capacity of a potential marker using ROC analysis. So, it is important to question linearity in marker-outcome relationships, in order to avoid erroneous conclusions

    Flexible geoadditive survival analysis of non-Hodgkin lymphoma in Peru

    Get PDF
    Knowledge of prognostic factors is an important task for the clinical management of Non Hodgkin Lymphoma (NHL). In this work, we study the variables affecting survival of NHL in Peru by means of geoadditive Cox-type structured hazard regression models while accounting for potential spatial correlations in the survival times. We identified eight covariates with significant effect for overall survival. Some of them are widely known such as age, performance status, clinical stage and lactic dehydrogenase, but we also identified hemoglobin, leukocytes and lymphocytes as covariates with a significant effect on the overall survival of patients with NHL. Besides, the effect of continuous covariates is clearly nonlinear and hence impossible to detect with the classical Cox method. Although the spatial component does not show a significant effect, the results show a trend of low risk in certain areas

    Transition probability estimates for non-Markov multi-state models

    Get PDF
    Non-parametric estimation of the transition probabilities in multi-state models is considered for non-Markov processes. Firstly, a generalization of the estimator of Pepe et al, 1991 (Statistics in Medicine) is given for a class of progressive multi-state models based on the difference between Kaplan-Meier estimators. Secondly, a general estimator for progressive or non-progressive models is proposed based upon constructed univariate survival or competing risks processes which retain the Markov property. The properties of the estimators and their associated standard errors are investigated through simulation. The estimators are demonstrated on datasets relating to survival and recurrence in patients with colon cancer and prothrombin levels in liver cirrhosis patients

    Highly sensitive marker panel for guidance in lung cancer rapid diagnostic units

    Get PDF
    While evidence for lung cancer screening implementation in Europe is awaited, Rapid Diagnostic Units have been established in many hospitals to accelerate the early diagnosis of lung cancer. We seek to develop an algorithm to detect lung cancer in a symptomatic population attending such unit, based on a sensitive serum marker panel. Serum concentrations of Epidermal Growth Factor, sCD26, Calprotectin, Matrix Metalloproteinases −1, −7, −9, CEA and CYFRA 21.1 were determined in 140 patients with respiratory symptoms (lung cancer and controls with/without benign pathology). Logistic Lasso regression was performed to derive a lung cancer prediction model, and the resulting algorithm was tested in a validation set. A classification rule based on EGF, sCD26, Calprotectin and CEA was established, able to reasonably discriminate lung cancer with 97% sensitivity and 43% specificity in the training set, and 91.7% sensitivity and 45.4% specificity in the validation set. Overall, the panel identified with high sensitivity stage I non-small cell lung cancer (94.7%) and 100% small-cell lung cancers. Our study provides a sensitive 4-marker classification algorithm for lung cancer detection to aid in the management of suspicious lung cancer patients in the context of Rapid Diagnostic Units.Ministerio de Ciencia e Innovación | Ref. PS09-00405Xunta de Galicia | Ref. INBIOMED 2012-273Xunta de Galicia | Ref. GRC2014/019Ministerio de Ciencia e Innovación | Ref. MTM2011-2320

    Increasing number of long-lived ancestors marks a decade of healthspan extension and healthier metabolomics profiles

    Get PDF
    Globally, the lifespan of populations increases but the healthspan is lagging behind. Previous research showed that survival into extreme ages (longevity) clusters in families as illustrated by the increasing lifespan of study participants with each additional long-lived family member. Here we investigate whether the healthspan in such families follows a similar quantitative pattern using three-generational data from two databases, LLS (Netherlands), and SEDD (Sweden). We study healthspan in 2143 families containing index persons with 26 follow-up years and two ancestral generations, comprising 17,539 persons. Our results provide strong evidence that an increasing number of long-lived ancestors associates with up to a decade of healthspan extension. Further evidence indicates that members of long-lived families have a delayed onset of medication use, multimorbidity and, in mid-life, healthier metabolomic profiles than their partners. We conclude that both lifespan and healthspan are quantitatively linked to ancestral longevity, making family data invaluable to identify protective mechanisms of multimorbidity. Development and application of statistical models for medical scientific researc

    Association between a 46-SNP Polygenic Risk Score and melanoma risk in Dutch patients with familial melanoma

    Get PDF
    Background Familial clustering of melanoma suggests a shared genetic predisposition among family members, but only 10%–40% of familial cases carry a pathogenic variant in a known high-risk melanoma susceptibility gene. We investigated whether a melanoma-specific Polygenic Risk Score (PRS) is associated with melanoma risk in patients with genetically unexplained familial melanoma. Methods Dutch familial melanoma cases (n=418) were genotyped for 46 SNPs previously identified as independently associated with melanoma risk. The 46-SNP PRS was calculated and standardised to 3423 healthy controls (sPRS) and the association between PRS and melanoma risk was modelled using logistic regression. Within the case series, possible differences were further explored by investigating the PRS in relation to (1) the number of primary melanomas in a patient and (2) the extent of familial clustering of melanoma. Results The PRS was significantly associated with melanoma risk, with a per-SD OR of 2.12 (95% CI 1.90 to 2.35, p<0.001), corresponding to a 5.70-fold increased risk (95% CI 3.93 to 8.28) when comparing the top 90th to the middle 40–60th PRS percentiles. The mean PRS was significantly higher in cases with multiple primary melanomas than in cases with a single melanoma (sPRS 1.17 vs 0.71, p=0.001). Conversely, cases from high-density melanoma families had a lower (but non-significant) mean PRS than cases from low-density families (sPRS 0.60 vs 0.94, p=0.204). Conclusion Our work underlines the significance of a PRS in determining melanoma susceptibility and encourages further exploration of the diagnostic value of a PRS in genetically unexplained melanoma families

    Serum methylation of GALNT9, UPF3A, WARS, and LDB2 as noninvasive biomarkers for the early detection of colorectal cancer and advanced adenomas

    Full text link
    Background Early detection has proven to be the most effective strategy to reduce the incidence and mortality of colorectal cancer (CRC). Nevertheless, most current screening programs suffer from low participation rates. A blood test may improve both the adherence to screening and the selection to colonoscopy. In this study, we conducted a serum-based discovery and validation of cfDNA methylation biomarkers for CRC screening in a multicenter cohort of 433 serum samples including healthy controls, benign pathologies, advanced adenomas (AA), and CRC.Results First, we performed an epigenome-wide methylation analysis with the MethylationEPIC array using a sample pooling approach, followed by a robust prioritization of candidate biomarkers for the detection of advanced neoplasia (AN: AA and CRC). Then, candidate biomarkers were validated by pyrosequencing in independent individual cfDNA samples. We report GALNT9, UPF3A, WARS, and LDB2 as new noninvasive biomarkers for the early detection of AN. The combination of GALNT9/UPF3A by logistic regression discriminated AN with 78.8% sensitivity and 100% specificity, outperforming the commonly used fecal immunochemical test and the methylated SEPT9 blood test.Conclusions Overall, this study highlights the utility of cfDNA methylation for CRC screening. Our results suggest that the combination methylated GALNT9/UPF3A has the potential to serve as a highly specific and sensitive blood-based test for screening and early detection of CRC

    Intergenerational transmission of longevity is not affected by other familial factors: evidence from 16,905 Dutch families from Zeeland, 1812-1962

    Get PDF
    Studies have shown that long-lived individuals seem to pass their survival advantage on to their offspring. Offspring of long-lived parents had a lifelong survival advantage over individuals without long-lived parents, making them more likely to become long-lived themselves. We test whether the survival advantage enjoyed by offspring of long-lived individuals is explained by environmental factors. 101,577 individuals from 16,905 families in the 1812–1886 Zeeland cohort were followed over time. To prevent that certain families were overrepresented in our data, disjoint family trees were selected. Offspring was included if the age at death of both parents was known. Our analyses show that multiple familial resources are associated with survival within the first 5 years of life, with stronger maternal than paternal effects. However, between ages 5 and 100 both parents contribute equally to offspring’s survival chances. After age 5, offspring of long-lived fathers and long-lived mothers had a 16-19% lower chance of dying at any given point in time than individuals without long-lived parents. This survival advantage is most likely genetic in nature, as it could not be explained by other, tested familial resources and is transmitted equally by fathers and mothers

    Genotype-phenotype correlations for pancreatic cancer risk in Dutch melanoma families with pathogenic CDKN2A variants

    Get PDF
    BACKGROUND: Pathogenic variants in the CDKN2A gene are generally associated with the development of melanoma and pancreatic ductal adenocarcinoma (PDAC), but specific genotype-phenotype correlations might exist and the extent of PDAC risk is not well established for many variants. METHODS: Using the Dutch national familial melanoma database, we identified all families with a pathogenic CDKN2A variant and investigated the occurrence of PDAC within these families. We also estimated the standardised incidence ratio and lifetime PDAC risk for carriers of a highly prevalent variant in these families. RESULTS: We identified 172 families in which 649 individuals carried 15 different pathogenic variants. The most prevalent variant was the founder mutation c.225_243del (p16-Leiden, 484 proven carriers). Second most prevalent was c.67G>C (55 proven carriers). PDAC developed in 95 of 163 families (58%, including 373 of 629 proven carriers) harbouring a variant with an effect on the p16INK4a protein, whereas PDAC did not occur in the 9 families (20 proven carriers) with a variant affecting only p14ARF. In the c.67G>C families, PDAC occurred in 12 of the 251 (5%) persons at risk. The standardised incidence ratio was 19.1 (95% CI 8.3 to 33.6) and the cumulative PDAC incidence at age 75 years (lifetime risk) was 19% (95% CI 7.5% to 30.1%). CONCLUSIONS: Our results support the notion that pathogenic CDKN2A variants affecting the p16INK4a protein, including c.67G>C, are associated with increased PDAC risk and carriers of such variants should be offered pancreatic cancer surveillance. There is no clinical evidence that impairment of only the p14ARF protein leads to an increased PDAC risk
    corecore