
Increasing number of long-lived ancestors marks a decade of
healthspan extension and healthier metabolomics profiles
Berg, N. van den; Rodríguez-Girondo, M.; Dijk, I.K. van; Slagboom, P.E.; Beekman, M.

Citation
Berg, N. van den, Rodríguez-Girondo, M., Dijk, I. K. van, Slagboom, P. E., & Beekman, M.
(2023). Increasing number of long-lived ancestors marks a decade of healthspan extension
and healthier metabolomics profiles. Nature Communications, 14(1).
doi:10.1038/s41467-023-40245-6
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3754080
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3754080


Article https://doi.org/10.1038/s41467-023-40245-6

Increasing number of long-lived ancestors
marks a decade of healthspan extension and
healthier metabolomics profiles

Niels van den Berg 1,2 , Mar Rodríguez-Girondo3, Ingrid K. van Dijk2,
P. Eline Slagboom 1,4,5 & Marian Beekman 1,5

Globally, the lifespan of populations increases but the healthspan is lagging
behind. Previous research showed that survival into extreme ages (longevity)
clusters in families as illustrated by the increasing lifespan of study partici-
pants with each additional long-lived family member. Here we investigate
whether the healthspan in such families follows a similar quantitative pattern
using three-generational data from two databases, LLS (Netherlands), and
SEDD (Sweden). We study healthspan in 2143 families containing index per-
sons with 26 follow-up years and two ancestral generations, comprising 17,539
persons. Our results provide strong evidence that an increasing number of
long-lived ancestors associates with up to a decade of healthspan extension.
Further evidence indicates that members of long-lived families have a delayed
onset of medication use, multimorbidity and, in mid-life, healthier metabo-
lomic profiles than their partners. We conclude that both lifespan and
healthspan are quantitatively linked to ancestral longevity, making family data
invaluable to identify protective mechanisms of multimorbidity.

The human life expectancy has doubled over the past two centuries1,
reaching 82.1 years in Western European countries2. Although people
started to live longer, the time spent in good physical and cognitive
health did not rise similarly2. In fact, over 70% of the 65 year olds have
at least one disease and over 50% have multimorbidity (2 disease or
more)3. In contrast to the general population, some persons seem
to become exceptionally old with a significantly lower chronic age-
related disease burden (e.g. high blood pressure, malignancies, and
type 2 diabetes) than the general population4–17. Moreover, the chil-
dren of these exceptionally old persons have a delayed first disease
onset11,14,18,19. These observations are mostly based on cross-sectional
designs4,9–14,17–19, so prospective studies into the development of first
diseases and (multi)morbidity are needed. The study of long-lived
families is important as they likely harbor gene-environment

interactions which beneficially regulate molecular pathways involved
in longevity, resistance to disease, resilience to negative side-effects of
treatment, and therefore healthy aging8,20.

In our previous work, we used data from millions of subjects in
contemporary medical and historical family-tree databases to investi-
gate the intergenerational transmission of human longevity21–24. We
concluded that longevity, as a heritable trait, is primarily transmitted if
persons belong to the oldest 10% survivors of their birth cohort and if
at least 30% of their ancestors also belonged to the oldest 10%
survivors21,22. Subsequently, we developed the Longevity Relatives
Count (LRC) score as an instrument to quantify the number of long-
lived family members and observed that the survival advantage of
study participants increased with each additional long-lived family
member, indicating additive effects21. As such, the LRC score is an
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indicator of increased survival and longevity, and can therefore be
used to enlarge the survival contrast in epidemiological data, thereby
leading to more powerful genetic longevity studies. If the LRC score
also represents healthspan as a quantitative trait (additive effects), this
instrument can potentially be used in (genetic) studies to elucidate
multimorbidity-limiting mechanisms.

We identified two issues that have not yet thoroughly been
investigated: (1)whether frommid-life onward, health,medication use,
disease incidence as well as the development of multimorbidity are
delayed over time, and (2) whether an increasing number of long-lived
ancestors, as measured with the LRC score, represents not only life-
span as a quantitative trait but also healthspan. To address these
issues, longitudinal life course and health data should ideally be
investigated, preferably in large numbers of individuals. In addition,
multigenerational family-tree information is required to investigate
how the number of ancestral long-lived relatives relates to morbidity.
Therefore we investigate chronic disease incidence and multi-
morbidity in long-lived families using up to 25 years of follow-up data.
We further study whether an increasing number of long-lived ances-
tors, as measured by the LRC score, associates with a decreased inci-
dence of chronic diseases. In addition, we investigate whether the
families with the most extreme LRC scores have a healthy metabo-
lomic profile in mid-life, representing overall health to complement
the information on morbidity.

We use the data available in the Leiden Longevity Study (LLS,
Netherlands) and the Swedish register data available in the Scanian
Economic-Demographic Database (SEDD, Sweden). The LLS, initiated
in 2002, was based on the inclusion of nonagenarian siblings. In
addition, the middle-aged children (called index persons (IPs) in the
current study) and their partners, as adult environment-matched
controls, were included. The SEDD contains the entire population of 5
parishes and a town in Scania (southern Sweden), and as suchdoes not
contain any initial inclusion criteria. For the current studywe identified
in both datasets combined 2143 three-generational families (F1-F3)
containing IPs (F3) and their family members, comprising 17,539 per-
sons in total. First, we examine whether LLS IPs and their partners
differ in terms of disease andmedication prevalence at themoment of
study inclusion (2002–2004). Second, we investigate differences in
disease incidence towardsmultimorbidity. Third, we study whether an
increasing number of long-lived ancestors is associated with a
decreased disease incidence in IPs using the Longevity Relatives Count
(LRC) score22 in both the LLS and SEDD datasets. Finally, we compare
mid-life health of LLS IPs with the highest LRC scores and their part-
ners, using a previously developed metabolomics-based score pre-
dicting mortality25.

Results
Study populations
LLS IPs and their partners, serving as environment-matched controls,
were included between 2002 and 2006 at the average age of 59 years.
The study inclusion was based on nonagenarian siblings in the F2
generation. Hence, IPs (F3) were included if they had at least one
long-lived F2 parent and F2 aunt or uncle (females ≥91 years and
males ≥89 years). The LLS consists of 651 three-generational families,
defined by IP siblings who have the same parents (mean sibship size
is 2.58). From inclusion onward, the IPs and their partners were
followed over time, with a maximum mortality follow-up of 19 years
(2002–2021) and maximum morbidity follow-up of 16 years
(2002–2018). In 2021, 227 (14%) IPs and 113 (15%) partners were
deceased and 1409 (84%) IPs and619 (83%) partnerswere still alive. In
2018, 671 (40%) IPs and 324 (43%) partners had a disease diagnosis
whereas 535 (32%) IPs and 206 (28%) partners did not have a disease
diagnosis (Fig. 1a and Table 1A).

The SEDD consists of 1495 three-generational families, defined by
IP siblings who have the sameparents (mean sibship size is 1.67). SEDD

IPs were followed over time from 1990, at an average age of 52 years,
with a maximum mortality and morbidity follow-up of 26 years
(1990–2015). In 2015, 694 (28%) IPs were deceased whereas 1803 (72%)
were still alive. Moreover, 1190 (48%) IPs had a disease diagnosis
whereas 1307 (52%) IPs did not have a disease diagnosis (Fig. 1B and
Table 1B). From here we will refer to disease diagnoses as diseases,
diseaseprevalence in cross-sectional analyses, anddisease incidence in
longitudinal analyses.

IPs have a lower risk of using medication early in the study
Data on medication use was collected in the LLS between 2006 and
2008 (Supplementary Fig. 1) and was available for 1254 LLS IPs (75%)
and 588 partners (79%). We focused on ATC A-C type medication
because they match the disease groups we investigate (see “Methods”
section and Supplementary Table 4). To study whether LLS IPs had a
lower medication use compared to their partners, we fitted mixed-
model logistic regression analyses. Figure 2 shows that the odds of
using ATC-A (alimentary tract andmetabolism) typemedication is 45%
(OR =0.55 (95% CI = 0.42−0.71)) lower for the offspring than for their
partners. Similarly, the odds of using ATC-B (blood and blood forming
organs) and ATC-C (cardiovascular system) type medication is 42%
(OR =0.58 (95% CI = 0.37−0.92)) and 48% (OR=0.52 (95% CI =
0.38−0.71)) lower for the IPs. Our analyses thus indicate that, early on
in the study, the IPs already had a significantly lower prescription of
metabolic and cardiovascular disease medication.
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Fig. 1 | Conceptualpedigreeof a 3filial (F) generationLLS andSEDD family.This
figure corresponds to Table 1. a represents a hypothetical family from the LLS and
b represents a hypothetical family from the SEDD, both covering 3 filial (F) gen-
erations. Circles represent women, Squares represent men. Dark blue: index per-
sons (IPs, F3), dark green: partners of IPs (F3; LLS only), light blue: fathers and
mothers of IPs (F2), aunts and uncles of IPs (F2), grandmothers and grandfathers of
IPs (F1), light green: fathers and mothers of IPs (F2). The F3 generation is investi-
gated in this study and the F2 and F1 generations were used to calculate the
Longevity Relatives Count (LRC) score. In the LLS, themean sibship size is 2.58 and
in SEDD the mean sibship size is 1.67.
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IPs have a delayed first disease onset during follow-up
To investigatewhether and towhatextent the onset offirst diseasewas
delayed for the LLS IPs compared to their partners during 16 years of
follow-up, we excluded persons who had ≥1 disease at inclusion. We
therefore include 917 LLS IPs of whom 39 (4.3%) were deceased at the
end of disease follow-up (2018) and 395 partners of whom 17 (4.3%)
were deceased. We fitted random effect (frailty) Cox regressions and
observed a Hazard Ratio (HR) of 0.79 (95% CI = 0.65–0.97) for the age-
related disease incidence between LLS IPs and their partners. This HR
indicates that the yearly risk of age-related disease was 21% lower for
the LLS IPs as compared to their partners. The LLS IPs had a 29%
(HR =0.71 (95% CI = 0.55–0.90)) lower risk of metabolic diseases and a
5% (HR =0.95 (95% CI = (0.70–1.31)) lower risk of malignant diseases
(Table 2A and Supplementary Table 1A). In addition, Supplementary
Fig. 2 shows that 50% of the LLS IPs had an age-related disease at the
age of 68 yearswhereas this was the case at the earlier age of 65.8 years
for their partners. 50% of the LLS IPs had ametabolic disease at an age
of 74.8 years, while this was the case at 68.6 years for their partners,
indicating amedian delay of metabolic disease diagnosis for LLS IPs of
6.2 years.

IPs have a delayed onset of multimorbidity during follow-up
To study whether the delayed onset of first disease for LLS IPs exten-
ded to developing more than one disease (multimorbidity) during the
16 years of follow-up, we investigated the difference in time from
inclusion to having two diseases within the same category (2 age-
related,metabolic, ormalignant diseases; Table 2B andSupplementary
Table 1B). We observed that the yearly risk to develop 2 age-related
diseases was 45% (HR =0.55 (95% CI = 0.36–0.85) lower for the LLS IPs
than for their partners, maximizing to a 49% (HR =0.51 (95%
CI = 0.26–0.97) difference for metabolic diseases. However, the yearly
risk to develop 2 malignant diseases (HR = 1.39 (95% CI = 0.29-6.70))
did not significantly differ between LLS IPs and their partners. Sup-
plementary Figure 3 shows the survival curves corresponding to
Table 2B.

To study whether LLS IPs, who already had a disease, had a lower
risk of getting a second disease, we investigated whether the time
between first and specific second disease was longer for the LLS IPs
than for their partners. Table 2C and Supplementary Table 2 show that
the yearly risk to develop an age-related or a metabolic disease after
already being diagnosed with an age-related disease, was 54% (HR =

Table 1 | Basic characteristics of LLS Index Persons, partners, and ancestral groups

Analyses groups Ancestral family groups

IPs (F3) Partners of
IPs (F3)

Parents of IPs (F2) Aunts/uncles of
IPs (F2)

Grandparents of IPs (F1) Parents of part-
ners (F2)

Panel A: LLS

Number, N (number of
families)

1674 (651) 745 (745) 1295 2370 760 1237

Female, N (%) 905 (54) 429 (57) 646 (50) 1169 (49) 380 (50) 620 (50)

Range birth
cohorts, years

1923–1971 1924–1974 1882–1928 1875–1951 1850–1894 1864–1947

Alive, N (%) 1409 (84) 619 (83) 116 (9) 368 (16) 0 (0) 254 (21)

Deceased, N (%) 227 (14) 113 (15) 1179 (91) 2001 (84) 760 (100) 1011 (82)

Missing age, N (%) 38 (2) 13 (2) 94 (7) 34 (1) 0 (0) 35 (3)

Mean ad or al, years (SD) 74.87 (6.67) 74.21 (7.22) 87.09 (14.13) 71.93 (28.03) 77.06 (14.15) 76.68 (13.86)

Disease free, N (%) 535 (32) 206 (28) – – – –

Diseased, N (%) 671 (40) 324 (43) – – – –

Missing disease, N (%) 468 (28) 215 (29) – – – –

Mean number of dis-
eases, N, (SD)

0.82 (0.92) 0.94 (0.98) – – – –

Panel B: SEDD

Number, N (number of
families)

2497 (1495) – 2969 5830 3028 –

Female, N (%) 1252 (50.1) – 1480 (49.8) 2866 (49.2) 1532 (50.6) –

Range birth
cohorts, years

1930–1950 – 1853–1914 1860-1950 1833-1918 –

Alive, N (%) 1803 (72.2) – 7 (0.2) 855 (14.7) 131 (4.3) –

Deceased, N (%) 694 (27.8) – 2962 (99.8) 4975 (85.3) 2897 (95.7) –

Missing age, N (%) – – – – – –

Mean ad or al, years (SD) 74.6 (6.7) – 76.0 (17.9) 57.4 (32.2) 64.0 (19.6) –

Disease free, N (%) 1307 – – – – –

Diseased, N (%) 1190 – – – – –

Missing disease, N (%) – – – – – –

Mean number of dis-
eases, N (SD)

– – – – – –

Index Persons (IPs) and their partnerswere included in the Leiden LongevityStudy (LLS)between2002and2006. The table is separatedbyanalysesgroupsandancestral family groups. The analyses
group information represent the persons (IPs and their partners) that are investigated in this study, as a complete group or in different subgroups. The ancestral family information represents the
ancestors of the IPs and their partners which are used to calculate the Longevity Relatives count (LRC) score. Panel A: For all groups, except the parents of partners (F2), mortality information was
updated in January 2021. All mortality information was obtained from the official and verified Netherlands Population Registers. Mortality information for the parents of partners (F2) was obtained
from questionnaires filled in by the partners of IPs (F3). Disease (morbidity) information was updated in 2018 based on input from the General Practitioners of the IPs and their partners. The study
covers amaximalmortality follow-upof 19 years (2002–2021) andmaximalmorbidity follow-up of 16 years (2002–2018). Panel B: SEDD IPswere followed over time from 1990, at an average ageof 52
years, with a maximal mortality and morbidity (disease) follow-up of 26 years (1990–2015). All mortality and morbidity data was obtained from the SEDD which is linked to the National Swedish
Registers (see “Methods” formore details). Because register datawas used, therewas nomissingdata for ages anddiseases.Moreover,we focusedonfirst diseasesand therefore nomeannumber of
diseases can be provided for the SEDD data. Families are defined by siblings who have the same parents. ad = age at death and al = age at last observation.
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0.46 (95% CI = 0.26–0.83), and 66% (HR =0.33 (95% CI = 0.14–0.81))
lower for the IPs, respectively. For a malignant disease following the
initial diagnosis of an age-related disease, no significant difference
between LLS IPs and their partners was observed (HR =0.58 (95%
CI = 0.27–1.25)). Supplementary Figure 4 shows the survival curves
corresponding to Table 2C. Moreover, stratification by disease group
showed that the HRs representing time from first to second disease
were not affected by the group (metabolic or malignant) of first
disease.

Increasing numbers of long-lived ancestors indicate a later
disease onset
In our previous work, we developed the Longevity Relatives Count
(LRC) score to quantify a person’s number of long-lived ancestors21,22.
The LRC score can be interpreted as a weighted proportion (ranging
between 0 and 1)22. For example, an LRC score of 0.5 for an IP indicates
50% long-lived ancestorsweighted by the genetic distancebetween IPs
(and partners in LLS) and their ancestors. Here we investigate whether
healthspan in LLS and SEDD is associated with the number of long-
lived ancestors by testing whether an increasing LRC score of IPs is
associated with a delay in disease onset and lower medication use in
a longitudinal study design of the two independent databases; LLS
and SEDD.

We conducted our analyses using two approaches. In the first
approach we used the LRC score to enlarge the contrasts between the
LLS IPs and their partners by defining four mutually exclusive groups:
LRC_g1: IPs with an LRC ≥0.60, LRC_g2: IPs with an LRC [≥0.1 & <0.60],
LRC_g3: partners with an LRC>0, and LRC_g4: partners with an
LRC =0. We subsequently compared the disease incidence and medi-
cation use of LRC_g1-3 with LRC_g4, using Cox-type random effect
(frailty) and linearmixedmodels respectively. In the second approach,
we calculated the LRC score in the LLS IPs and partners combined,
allowing a quantitative definition of the LRC-score instead of defining
groups. Using the quantitatively defined LRC-score we investigate
whether an increasing LRC score associates with a decreasing first
disease incidence, using Cox-type random effect (frailty) models.
Finally, we replicated the results obtained in the LLS by repeating our
analysis in Swedish register data (SEDD).

First approach. When comparing the LLS IPs with an LRC score ≥0.60
(LRC_g1) with the partners who had an LRC score of 0 (LRC_g4) we

observed an HR of 0.56 (95% CI = 0.34–0.92) and 0.69 (95%
CI = 0.31–1.53) for time to first age-related and malignant disease,
respectively (Table 3). Table 3 further shows that the healthspan
benefit of the LRC_g1 group wasmost striking for the incidence of first
metabolic disease, for which the yearly risk was 53% lower (HR =0.47
(95% CI = 0.25–0.87)). For comparison: HR’s in Table 2 (not applying
LRC score) are 0.79, 0.95, and 0.71 for age-related, malignant, and
metabolic diseases respectively, providing a strong indication that
increasing numbers of long-lived ancestors are associated to a later
disease incidence. To illustrate this comparison, Fig. 3 shows the sur-
vival curves for the LLS IPs and partners (Panel A corresponding to
Table 2) and the LRC groups (Panel B corresponding to Table 3). The
figure shows how the LRC score maximizes the contrast: 50% of the
LRC_g4 persons developed a first metabolic disease at the age of 68
years, whereas 50% of the LRC_g1 persons developed a first metabolic
disease at the age of 81 years. Hence, the LRC_g1 persons delayed the
age of metabolic disease onset with a pronounced 13 years difference.
The survival curves of the other disease categories are presented in
Supplementary Fig. 5. Further benefit for LRC_g1 over LRC_g4 concerns
thedevelopment ofmultimorbidity andmedicationuse, sinceanHRof
0.14 (95% CI = 0.03–0.70) was observed for the time to develop 2 age-
related diseases and an OR of 0.26 (95% CI = 0.12–0.57) for medica-
tion use.

Second approach. We calculated the LRC score for the LLS IPs and
their partners combined to avoid any grouping. Table 4A shows that
with every 0.1 (10%) increase in LRC score, LLS F3 participants had a 5%
(HR =0.95 (95%CI = 0.91–0.99)) lower yearly risk to develop afirst age-
related disease. To illustrate the magnitude, this effect increases to
50% when all ancestors were long-lived (LRC score = 1). We further
observed a 7% (HR =0.93 (95% CI = 0.88–0.98)) lower yearly first
metabolic and 3% (HR =0.97 (0.91–1.04)) lowermalignant disease risk,
though the latter effect was not statistically significant.

We replicated the results obtained in the LLS by repeating our
analyses in Swedish register data (SEDD). Table 4B shows that with
every 10% increase in LRC score, the SEDD IPs have a 6% (HR =0.94
(95% CI = 0.89–0.98)) lower yearly risk to develop a first age-related
disease, 9% (HR =0.91 (0.87–0.96)) lower risk for metabolic and 5%
(HR =0.95 (0.90–0.99)) for malignant disease. Moreover, the yearly
risk of dying decreases 8% (HR =0.92 (0.87–0.97)) with every 10%
increase in LRC score.

ATC−A ATC−B ATC−C

0
10

20
30

40
50

60
70

31.9
27.7

13.7
10.2

58.8

46.3

N=114 N=198 N=49 N=73 N=210 N=331

OR=0.55 (95% CI=0.42−0.71) 
P-value=5.24e−06

OR=0.58 (95% CI=0.37−0.92) 
P-value=1.96e−02

OR=0.52 (95% CI=0.38−0.71) 
P-value=3.7e−05

Pe
rc

en
ta

ge
 m

ed
ic

at
io

n 
us

e

Fig. 2 | Disease prevalence andmedication use in the LLS.This figuredepicts the
odds ratio’s (ORs; estimated effect sizes) for medication use. Blue bars represent
LLS IPs and green bars represent their partners, similar to the colors used in Fig. 1.
The y-axis represent the percentage of LLS IPs and partners who used ATC-A
(alimentary tract and metabolism; Noffspring = 198 and Npartners = 114), ATC-B (blood
and blood-forming organs; Noffspring = 73 and Npartners = 49), or ATC-C

(cardiovascular system; Noffspring = 331 and Npartners = 210) type medications (x-
axis). CI is the abbreviation for confidence interval and N represents the numbers
of the LLS IPs and partners in the specific disease groups. Statistical testing was
performed using Wald tests for the Odds Ratios estimated with a mixed-model
logistic regression analysis. The analyses are adjusted for age at inclusion and sex.
Source data are provided as a Source Data file.
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IPs already had a healthy metabolomic profile at inclusion
Our results point strongly towards protection frommetabolic diseases
for persons with an increasing number of long-lived ancestors as
established with a high LRC score. We therefore investigated whether
those with a high LRC score at the moment of inclusion in the LLS,
indeed have a healthy circulating metabolomic profile that marks
protection fromdisease atmidlife. To estimate health as a quantitative
parameter, we used a recently developed NMR-metabolomics-based
predictor of 5–10 years all-cause mortality across all ages frommidlife
onwards (from here MetaboHealth score)25. Hence, we explored whe-
ther the MetaboHealth score associates with differences between LRC
groups as defined in the first approach of the analysis above (LRC_g1-3

compared to LRC_g4) and conducted a mixed model linear regression
analysis.

Weobserved that the IPswith anLRC score ≥0.60 (LRC_g1 IPs) had
a 0.098 (95%CI: [−0.184] – [−0.012]) lower MetaboHealth score than
the partners who had an LRC score of 0 (LRC_g4 IPs; Fig. 4 and Sup-
plementary Table 3). The LRC_g2 and LRC_g3 IPs had a 0.032 (95%CI:
[−0.077] – [0.012]) and a 0.016 (95%CI: [−0.091] – [0.058]) lower score
than the LRC_g4 IPs respectively. Though the effects are relatively
small (Fig. 4), indeedweobserved that the LLS IPswith ≥60% long-lived
ancestors, who show delayed onset of disease, also have a healthier
circulating metabolomic profile in mid-life than the partners with an
LRC score of 0.

Discussion
Human longevity is heritable and clusters in specific families.Members
of these families live longer and seem to age healthier than the general
population. Studying these long-lived families is important to improve
our understanding of the molecular and environmental mechanisms
that protect from (multi)morbidity and promote a healthy survival up
to high ages. In this studywe investigated the development of diseases
from mid-life onwards in big multigenerational and prospective data,
coveringup to 26 yearsof follow-up, in familybased (LLS,Netherlands)
and population based (SEDD, Sweden) data.We showed thatmembers
of long-lived families have a delayed onset of disease, multimorbidity,
and medication use as compared to their partners, thereby extending
their healthspan with up to a decade. These members also postponed
multimorbidity since those who were already diagnosed with an age-
related disease (Supplementary Table 4) had a 54% lower risk of having
a second age-related disease compared to their partners. When
defining familial longevity quantitatively using the LRC score, we
demonstrated that an increasing number of long-lived ancestors
associates with an increasing delay in disease onset and lower medi-
cation use. Finally, we demonstrated that at the moment of LLS study
inclusion, those with an LRC score ≥0.60 (LRC_g1)) had a better
MetaboHealth score than their partners with an LRC score of 0
(LRC_g4), indicating better immune and metabolic health, and lower
5-yearsmortality risk. We conclude that an increasing number of long-
lived ancestors, as measured with the LRC score, is a quantitative
indicator of familial longevity, capturing decreased mortality risk,
protection against multimorbidity, and improved health in selected
families as well as the population. The LRC score can thus potentially
be used in genetic studies to elucidate multimorbidity-limiting
mechanisms that promote healthspan already in mid-life.

Our analyses, using ancestralmortality data, in the selected Dutch
longevity families and the Swedish register data led to remarkably
similar conclusions. An increasing number of long-lived ancestors, as
measured with the LRC score, not only associates with a lower mor-
tality at anymoment in life21,22, it also associates, in a similarway, with a
lower disease incidence during mid and later life (60–75 years): With
every 10% increase in LRC score the yearly risk to develop an age-
related disease decreased with 5% in the LLS, and 6% in the SEDD,
maximizing to 50% and 60% respectively when all ancestors were
long-lived.

We did observe stronger effects in the SEDD data than in the LLS
data, with consistently lower hazard ratio’s (HRs) for age-related and
metabolic disease incidence. Thismay be explained firstly because LLS
IPs are compared with their partners as controls, either as separate or
combined groups in the LRC analyses. IPs and partners share the same
adult household and thus, the LLSdesign controls for shared resources
and behavior (such as socio-economic status, social network, and
lifestyle). In the SEDD data we did not compare IPs with their partners.
The effect size difference between LLS and SEDD may therefore
represent the influence of shared resources and behavior26. Secondly,
in the LLS disease diagnoses were obtained from the general practi-
tioners (GPs) whereas in the SEDD, disease diagnoses were obtained

Table 2 | LLS disease incidence

N (prop) Events
(prop)

HR (95% CI) P-value

A: Time from inclusion to first disease

Age-related diseases

LLS IPs 917 (0.70) 362 (0.39) 0.79 (0.65–0.97) 2.32 × 10−2

Partners (ref) 395 (0.30) 171 (0.43) – –

Metabolic diseases

LLS IPs 917 (0.70) 261 (0.23) 0.71 (0.55–0.90) 5.18 × 10−3

Partners (ref) 395 (0.30) 135 (0.34) – –

Malignancies

LLS IPs 917 (0.70) 130 (0.14) 0.95 (0.70-1.31) 7.66 × 10−1

Partners (ref) 395 (0.30) 56 (0.14) – –

B: Time from inclusion to 2 diseases

Age-related diseases

LLS IPs 611 (0.70) 73 (0.12) 0.55 (0.36–0.85) 6.83 × 10−3

Partners (ref) 268 (0.30) 47 (0.18) – –

Metabolic diseases

LLS IPs 611 (0.70) 45 (0.07) 0.51 (0.26–0.97) 3.96 × 10−2

Partners (ref) 268 (0.30) 29 (0.11) – –

Malignancies

LLS IPs 611 (0.70) 7 (0.01) 1.39 (0.29-6.70) 6.82 × 10−1

Partners (ref) 268 (0.30) 2 (0.01) – –

C: Time from first disease to second disease

Age-related → Aage-related diseases

LLS IPs 500 (0.68) 79 (0.16) 0.46 (0.26–0.83) 9.82 × 10−3

Partners (ref) 237 (0.32) 55 (0.23) – –

Age-related → Metabolic diseases

LLS IPs 500 (0.68) 62 (0.12) 0.33 (0.14–0.81) 1.46 × 10−2

Partners (ref) 237 (0.32) 44 (0.19) – –

Age-related → Malignant diseases

LLS IPs 500 (0.68) 17 (0.03) 0.58 (0.27-1.25) 1.66 × 10−1

Partners (ref) 237 (0.32) 11 (0.05) – –

Table shows the time from inclusion to first disease in panel A, the time from inclusion tohaving 2
diseases (panel B), and the time fromfirst to seconddisease (panelC). N is thegroup sizeused for
the analyses and prop. is the proportion from the total. Events are the events of the specific
diseases, for example, age-related diseases, and prop. indicates the proportion from the size of a
specific group (LLS IPs or partners). For example, in panel A, there are 917 offspring and 395
partners. The total is 1312. 917 is 70% out of the total and 395 is 30% of the total. 362 events are
then 39% out of the 917 offspring and 171 events are 50% out of the 395 partners. HR is the
abbreviation for Hazard Ratio and represents the estimated effect size. Statistical testing was
performed usingWald tests for the conditional log-hazard ratio estimated with a Cox-type frailty
regressionmodel. The analyses areadjusted for sex, different agesof studyentry (left truncation),
and right censoring.Survival curvedetails canbe found inSupplementary Figs 2–4.To study time
from inclusion to first disease, only persons without any disease at inclusion were investigated.
Note that the numbers in panel B are lower than those in panel A. This is because the censoring
group reflects those for whom we have not observed any disease at the end of follow-up. As a
result, persons with only one disease are excluded from the analyses. Moreover, the analyses in
panel C are confined topersonswho experienced a first disease. The numbers are larger than the
events reported in panel A because we allowed for 1 disease prior to the start of follow-up (see
“Methods” section for more details).
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from hospital records available in the Swedish national register data. It
may be that stronger effects were observed in the SEDD because
hospitalization is on average an indication of more extreme health
events than receiving a GP diagnosis. Nevertheless, for many of the GP
diagnosed diseases, such as a myocardial infarction, hospitalization is
also required.

We did not observe statistically significant results for malig-
nancies in the LLS data whereas we did observe significant effects in
the SEDD data. However, within the SEDD data the effects for malig-
nant disease incidence were considerably smaller (HR closer to refer-
ence group) than for metabolic and age-related diseases. A first
explanation for this observation, which also applies to the generally
smaller effects in the LLS compared to SEDD, relates to differences in
study population and follow-up time. LLS IPs and partners were
followed-up for a maximum of 16 years from the average age of 59
years whereas for the SEDD IPs this was a maximum of 26 years from
the average age of 52 years. As a result, the protecting effect of familial
longevity may be a bit more mitigated in the LLS27. Moreover, we may
have missed early onset (~50 years) malignancies in the LLS whereas
those are included in the SEDD. This could also explain why a

considerably lower proportion of malignant diseases was available in
LLS than in the SEDD whereas this was not the case for metabolic
diseases. Secondly, inherited genetic factors have a limited effect on
many types of malignancies, with heritability estimates ranging
between20%and 30%28. However, the chronic diseases, asmeasured in
our study, are much more heritable29–38, with over 70% heritability for
type 2 diabetes39,40. As the LRC score captures additive genetic
effects21,22, the lower heritability ofmalignancies could explain why the
small number of malignant disease observations in the LLS did not
provide enough power to detect effects and why the effect sizes are
lower in the SEDD compared to metabolic diseases. Previous research
focusing on malignant diseases in long-lived individuals and their
offspring obtained heterogenous results4,5,7,8,10,11,13–15,17,41–45 which may
also be due to study population and selection differences.

Past research primarily focused on studying disease prevalence of
long-lived individuals, such as centenarians, and their children4,9–14,17–19

in cross-sectional designs. Our data covers up to 26 years of follow-up
and provides a unique combination between ancestral mortality
information and deep phenotyping of chronic age-related diseases,
medicationuse, aswell asmetabolomics. This allowedus to closely link

Table 3 | LLS disease incidence and medication use in LLS LRC groups

Panel A: disease incidence

A: Time from inclusion to first disease

N (prop) Events (prop) HR (95% CI) P-value

Age-related diseases

LRC_g4: partners with LRC=0 (ref) 262 (0.21) 113 (0.43) – –

LRC_g3: partners with LRC>0 89 (0.07) 38 (0.43) 0.85 (0.58–1.26) 4.29 × 10−1

LRC_g2: IPs with LRC ≥0.1 & <0.60 843 (0.66) 339 (0.40) 0.80 (0.63–1.01) 5.98 × 10−2

LRC_g1: IPs with LRC ≥0.60 74 (0.06) 23 (0.31) 0.56 (0.34–0.92) 2.17 × 10−2

Metabolic diseases

LRC_g4: partners with LRC=0 (ref) 262 (0.21) 88 (0.34) – –

LRC_g3: Partners with LRC>0 89 (0.07) 30 (0.34) 0.82 (0.51–1.30) 3.89 × 10−1

LRC_g2: IPs with LRC ≥0.1 & <0.60 843 (0.66) 246 (0.30) 0.72 (0.54–0.95) 2.17 × 10−2

LRC_g1: IPs with LRC ≥0.60 74 (0.06) 15 (0.20) 0.47 (0.25–0.87) 1.72 × 10−2

Malignancies

LRC_g4: partners with LRC=0 (ref) 262 (0.21) 37 (0.14) – –

LRC_g3: Partners with LRC>0 89 (0.07) 14 (0.16) 1.04 (0.56-1.94) 8.93 × 10−1

LRC_g2: IPs with LRC ≥0.1 & <0.60 843 (0.66) 122 (0.13) 0.97 (0.64-1.46) 8.89 × 10−1

LRC_g1: IPs with LRC ≥0.60 74 (0.06) 8 (0.11) 0.69 (0.31-1.53) 3.62 × 10−1

B: Time from inclusion to 2 diseases

Age-related diseases

LRC_g4: partners with LRC=0 (ref) 177 (0.21) 31 (0.18) – –

LRC_g3: Partners with LRC>0 60 (0.07) 9 (0.15) 0.66 (0.28-1.54) 3.33 × 10−1

LRC_g2: IPs with LRC ≥0.1 & <0.60 565 (0.67) 71 (0.13) 0.56 (0.34–0.93) 2.50 × 10−2

LRC_g1: IPs with LRC ≥0.60 46 (0.05) 2 (0.04) 0.14 (0.03–0.70) 1.65 × 10−2

Panel B: medication use

N (prop) Events (prop) OR (95% CI) P-value

ATC-C (metabolic medication)

LRC_g4: partners with LRC=0 (ref) 428 (0.21) 144 (0.35) – –

LRC_g3: Partners with LRC>0 149 (0.07) 43 (0.29) 0.70 (0.39-1.25) 2.26 × 10−1

LRC_g2: IPs with LRC ≥0.1 & <0.60 1363 (0.66) 306 (0.23) 0.43 (0.30–0.63) 1.02 × 10−5

LRC_g1: IPs with LRC ≥0.60 124 (0.06) 24 (0.19) 0.26 (0.12–0.57) 7.16 × 10−4

In this table the analyseswith the largest sample size are repeated after definingnewgroupsbased on the ancestralmortality information of the LLS IPs and partners. LLS IPswere separated into two
groups. Group 1 are those who have 60% of their ancestor belonging to the top 10% of their birth cohort (LRC_g1) and group 2 are the other, original LLS, offspring (LRC_g2). Partners were also
separated into two groups. Group 3 are those who have at least one parent that belongs to the top 10% survivors of his/her birth cohort (LRC_g3) and group 4 are those without any parents who
belong to the top 10% survivors of their birth cohort (LRC_g4). As some ancestors of LLS IPs were still alive, they were excluded from the LRC score (seemethods formore details). 236 ancestors of
partners were still alive. To not lose those who were still alive for our analyses, we used single imputation to predict the remaining life expectancy after having reached a specific age (last age of
observation) basedon theDutchpopulation life expectancy. Lifetableswereprovided by StatisticsNetherlands from 1850up to2021 (seemethods formoredetails).HR is the abbreviation forHazard
Ratio and represents the estimated effect size. Statistical testingwas performed usingWald tests for the conditional log-hazard ratio estimatedwith a Cox-type frailty regressionmodel. The analyses
are adjusted for sex, different ages of study entry (left truncation) and right censoring.
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familial longevity to medication use and the incidence of multiple
diseases. Detailed information about disease incidence was provided
by the treating physicians (General Practitioners, GPs) of the LLS IPs
and their partners. In the SEDD, we used hospitalization records from
the Swedish national registers (see “Methods” section for more
details). The combination between these two types of data ensured

robustness against healthy participant bias. Together, the LLS and
Swedish data cover a very large and robustly measured (GP records in
the Netherlands and hospitalization records in Sweden) group of
persons to investigate disease incidence from a familial perspective,
with up to 26 years of disease follow-up. Apart from this, the LLS was
initiatedwith the inclusion of (1) LLS IPswhohad at least one long-lived

Table 4 | Quantitative LRC analyses of time to first disease in LLS en SEDD

N Events (prop) HR (95% CI) P-value

A: LLS data

Age-related diseases 1312 533 (0.41) 0.95 (0.91–0.99) 3.06 × 10−2

Metabolic diseases 1312 396 (0.30) 0.93 (0.88–0.98) 1.37 × 10−2

Malignancies 1312 186 (0.14) 0.97 (0.91-1.04) 4.98 × 10−1

B: SEDD data

Age-related diseases 2497 1,190 (0.48) 0.94 (0.89–0.98) 1.22 × 10−3

Metabolic diseases 2497 706 (0.28) 0.91 (0.87–0.96) 4.84 × 10−3

Malignancies 2497 671 (0.27) 0.95 (0.90–0.99) 4.43 × 10−2

Death 2497 694 (0.28) 0.92 (0.87–0.97) 1.72 × 10−3

Table shows the time from inclusion to first disease.N is the group size. Events are the events of the specific diseases, for example, age-related diseases, and prop. indicates the proportion from the
size of a specific diseasegroup. for example, 533 (41%) out of the 1312 persons had an age-relateddisease. HR represents the estimated effect size. Statistical testingwas performedusingWald tests
for the conditional log-hazard ratio estimated with a Cox-type frailty regression model. The analyses are adjusted for sex, different ages of study entry (left truncation) and right censoring. Only
persons without any disease at inclusion are studied.
sd standard deviation, HR hazard ratio.
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Fig. 3 | LLS metabolic disease incidence with and without LRC-defined groups.
This figuredepicts survival curves reflectingmetabolic disease incidencewithin the
Leiden Longevity Study (LLS). The x-axis show age in years and the y-axis show
metabolic disease incidence. Dotted lines represent the age at which 50% of the
members of a specific group had their firstmetabolic disease.adepicts twogroups;
the blue line represents LLS Index Persons (IPs; N = 917) and the green line repre-
sents the partners (N = 395). The mean difference between the lines represents the
Hazard Ratio (HR; estimated effect size) shown in Table 2. b depicts four groups;

LRC_g1: IPs with an LRC ≥0.60 (dark blue; N = 74), LRC_g2: IPs with an LRC [≥0.1 &
<0.60] (light blue; N = 843), LRC_g3: partners with an LRC >0 (light green; N = 89),
and LRC_g4: partners with an LRC=0 (dark green; N = 262). The mean difference
between the LRC_g1-3 and LRC_g4 line represents theHRs shown in Table 3. Vertical
lines within the colored lines represent right censored events. The bottom column
of panel a and b shows how many persons were still at risk of having a metabolic
disease at different ages. Survival curves are adjusted for left truncation and right
censoring. Source data are provided as a Source Data file.
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parent and aunt or uncle and (2) the partners of the LLS IPs. LLS IPs are
likely to share social (e.g. social network, socio-economic status) and
behavioral (e.g. lifestyle, drinking, sporting) traits important for heal-
thy aging and longevity, for example, because they share the same
household or due to assortative mating26. The LLS study design thus
corrects for such similarities between LLS IPs and partners, potentially
resulting in an underestimation of differences between LLS IPs and
partners as compared to general population controls9. However,
replication in the SEDD, which does not contain any initial inclusion
criteria, guarantees results which are not influenced by partner
similarities.

Genetic longevity studies so far mainly focused on survival to
exceptional ages. Using the LRCscore, disease-free survival, possibly in
combination with the MetaboHeath score, may be explored as a
broader phenotype to increase the power of longevity genetic studies.
In addition, the association between LRC score and delayed disease
incidence may be explained by the presence of variants protecting
from development of disease and/or the absence of disease loci in the
long-lived families. Though, previous research showed no evidence
that long-lived persons were characterized by the absence of disease
loci46, GWAS studies identifying disease susceptibility variants for
example, for hypertension47, Alzheimer’s disease48 has progressed
significantly. Hence, it is interesting to re-investigate if the absence of
disease susceptibility loci associates to the LRC score. Asmentioned in
the previous paragraphs, the larger effect sizes in the SEDD likely
illustrate the importance of shared resources and behavior in long-
lived families. Further evidence for the clustering of socio-behavioral
traits was provided in a recent study which showed that members of

long-lived families were less frequently hospitalized with smoking-
related cancers as a first disease8. As socio-behavioral traits are influ-
enced by complex combinations between genes and environment,
further investigation may aid genetic research while providing an
interesting basis to investigate the social complexity underlying
familial longevity.

Our results provide strong evidence that an increasing number of
long-lived ancestors associates with up to a decade of healthspan
extension and a healthy metabolomic profile in mid-life. Our results
have two important implications. First, future genetic research aimed
at identifyingprotective longevitymechanismsbeneficially influencing
the risk of multimorbidity could focus on a broader definition of
longevity entailing survival to exceptional ages as well as disease-free
survival and possibly the MetaboHealth score metabolites. Second,
our results highlight the importance of integrating multiple genera-
tions of ancestral mortality data to existing and novel studies. In the
past it was difficult to obtain such ancestral information but currently
it ismuchmore feasible to do so, as population scale family tree data is
becoming increasingly available21,49,50. Moreover, in an increasing
number of countries ancestral data can be retrieved from the national
statistics bureaus, such as Statistics Sweden or Statistics Netherlands.
Finally, next to genetic drivers of longevity and disease incidence, it is
important to investigate if and how potential socio-behavioral
resources51, such as socio-economic status and stress, associate to
both longevity and disease incidence. If these novel insights are con-
sistently applied across studies, the comparative nature of longevity
studies may improve and facilitate the discovery of novel genetic
variants and mechanisms promoting healthy ageing.
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Fig. 4 | MetaboHealth score differences for LRC groups at LLS study inclusion.
The x-axis depicts three groups; LRC_g1: IPs with an LRC ≥0.60 (dark blue; N = 121),
LRC_g2: IPswith anLRC [≥0.1 and<0.60] (light blue;N = 1297), and LRC_g3: partners
with an LRC>0 (light green; N = 135). The dotted red line depicts the mean Meta-
boHealth scoreof the LRC_g4 group: partnerswith anLRC=0 (dark green;N = 397).
The y-axis depicts the MetaboHealth score. Higher MetaboHealth score values
represent a less healthy metabolomic profile as measured by the MetaboHealth
score. The score represents 5/10 year mortality risk (see “Methods” for more

details). The middle line in the boxes represents the mean, the edges of the boxes
represent the first quartile and the extreme whiskers represent the third quartile.
The bottom of the figure depicts the beta coefficients (estimated effect sizes) for
the comparison between LRC_g1-3 with LRC_g4 and correspond to Supplementary
Table 3. Statistical testing was performed using T tests for the Beta coefficients
estimated with a mixed-model linear regression analysis. The analyses are adjusted
for sex, age at inclusion, and medication use. Source data are provided as a Source
Data file.
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Methods
Leiden Longevity Study
The Leiden Longevity Study (LLS) was initiated in 2002 to study the
mechanisms that lead to exceptional survival. Inclusion took place
between 2002 and 2006 and initially started with the recruitment of
living sibling pairs. Within a sibling pair, males were invited to parti-
cipate if they were 89 years or older and females if they were 91 years
or older. Inclusion was subsequently extended to the children of the
sibling pairs and their partners. In the current study, we focus on the
children of the sibling pairs and their partners, referring to themas LLS
IPs and partners. From their perspective, IPs were included if they had
at least one long-lived parent and aunt or uncle (females ≥ 91 years and
males ≥ 89 years). In total, 1674 Index Persons (IPs, F3), 745 partners
(F3), 1295 parents (F2), 2370 aunts and uncles (F2), 760 grandparents
(F1), and 1237 parents of the partners (F2) were included in this study.
The LLS currently consists of 651 three-generational families, defined
by IP siblings who have the same parents (Fig. 1).

Mortality information was verified by birth or marriage certificates
and passports whenever possible. Additionally, verification took place
via personal cards which were obtained from the Dutch Central Bureau
of Genealogy. In January 2021 all mortality information was updated
through the Personal Records Database (PRD) which is managed by
Dutch governmental service for identity information. https://www.
government.nl/topics/personal-data/personal-records-database-brp.
The combination of officially documented information provides very
reliable and complete ancestral aswell as currentmortality information.

Disease data has been retrieved from the General Practitioners
(GPs) of the LLS IPs and partners and covers the period frombirth until
2018. GPs extracted the presence of chronic age-related diseases as
specified in Supplementary Table 4 and the year the disease occurred
from their electronic health records. The GP records are kept up to
datewhen aperson switches fromoneGPpractice to another.Diseases
were clustered into 3 groups based on the International Statistical
Classification of Diseases and Related Health Problems (ICD-10) codes,
(1) metabolic diseases, (2) malignant diseases, and (3) age-related
diseases, which are the combination of metabolic and malignant dis-
eases. Furthermore, cross-sectional information on medication use
from pharmacies was obtained for the period 2006-2008, indicating
whether a specific medicine was used or not. Medication was grouped
according to the international Anatomical Therapeutic Chemical
Classification System (ATC) standard. We focused on ATC-A (alimen-
tary tract and metabolism), ATC-B (blood and blood forming organs),
and ATC-C (cardiovascular system) type medications because they
match the disease groups we investigate.

Ethylenediamine tetraacetic acid (EDTA) plasma samples were
obtained for all LLS IPs and partners at inclusion. From these samples,
metabolomics biomarker data was quantified using high-throughput
nuclear magnetic resonance (NMR) spectroscopy provided by the
Nightingale Health platform. Experimentation and application details
of the Nightingale NMR platform has previously been described52,53.
Moreover, the metabolic biomarkers measured using the nightingale
platformwere used in a variety of publications (overview can be found
here: https://nightingalehealth.com/publications).

Scanian Economic-Demographic Database
The Scanian Economic-DemographicDatabase (SEDD) is a longitudinal
database covering five rural Scanian parishes and the city of Land-
skrona. It spans the period 1812-1967, with full coverage of the villages
from 1812 and for Landskrona from 1904. The SEDD database was
constructed using register-type data from catechetical examination
registers and was updated with information on births, marriages, and
deaths from church books. Unique person numbers were introduced
in Sweden by 1947. Through these person numbers individuals can be
followed in the national Swedish registration, introduced in 1968.
Persons who out-migrated from the research region before the

introduction of the person numberwere linked to the 1950Census and
the Swedish Death Index. The obtained person numbers were subse-
quently used to track individuals in the Swedish national register for
the period 1968-2015. The link to the Swedish Death Index yielded
ancestral death dates anywhere in Sweden even for individuals who
out-migrated from the research region before the person number or
nationwide register data were introduced. At present (2023), the SEDD
database contains 920,159 unique individuals.

Index person (IP) identification for this study happened in sub-
sequent steps (Supplementary Table 5). First, from the entire SEDDdata
we identified all persons (from here: IPs) who were part of the national
register data in the years 1990–1995 and between ages 45–60, and
followed them in the national registers for the period 1990–2015. Sec-
ond, IPs were selected to have known grandparents on at least one side
of the family (maternal or paternal), and whose parents were from an
extinct birth cohort (born before 1915) to ensure complete information
about their date of death. Third, we included lifespan information of
their parents, aunts and uncles, and their grandparents. Fourth, IPs who
were found in the hospital records in the year preceding their eligibility
for the study (1989–1994)were excluded tominimize the number of IPs
with existing conditions receiving hospital treatments. Lastly, partners
of IPs were excluded to ensure mutually exclusive ancestral informa-
tion. In total, 1493 Index Persons (IPs, F3), 2969 parents (F2), 5830 aunts
and uncles (F2), and 3028 grandparents (F1) were included in this study.
The SEDD consists of 1495 three-generational families, defined by IP
siblings who have the same parents (Fig. 1).

The Swedish hospital registers reached nationwide coverage in
1987 and records are considered complete from 1989. The main diag-
nosis for each hospitalization has been recorded in ICD-9 coding from
1987 to 1997 and ICD-10 coding 1997 to 2015. We recoded ICD-9 diag-
noses to ICD-10 using the official crosswalk provided by Statistics
Sweden. Diseases are specified identical to the LLS (Supplementary
Table 4) to ensure comparability between the databases. It is relevant
for our analyses to mention that only 214 IPs (8.6%) die without ever
receiving a hospital diagnosis as a higher percentage would have war-
ranted a competing risk analysis (see statistics section formore details).

Lifetables
In the Netherlands and Sweden, population-based cohort lifetables are
available from 1850 and 1800 respectively, until 202154,55. These life-
tables contain, for each birth year and sex, an estimate of the hazard of
dying between ages x and x + n (hx) based on yearly intervals (n = 1) up
to 99 years of age. Conditional cumulative hazards (Hx) and survival
probabilities (Sx) can be derived using these hazards. In turn, we can
determine to which sex and birth year based survival percentile each
person of our study belonged to. For example: a person was born in
1876, was a female, and died at age 92. According to the lifetable
information this person belonged to the top three percent survivors of
her birth cohort, meaning that only three percent of the women born
in 1876 reached a higher age. We used the lifetables to calculate the
birth cohort and sex-specific survival percentiles for all persons in the
LLS and SEDD. This approach takes sex-specific differences in long-
evity into account and prevents against the effects of secularmortality
trends over the last centuries and enables comparisons across study
populations56,57. In SEDD, we focused only on extinct birth cohorts and
death ancestors. However, In the LLS some ancestors (only aunts/
uncles) were still alive (right censoring). To deal with non-extinct birth
cohorts, we used the prognostic lifetables provided by Statistics
Netherlands54,55 and to deal with right censoring we used single
imputation where we estimated an age of death based on the
remaining life expectancy at the age of censoring.

Scores
LRC score. The Longevity Relatives Count (LRC) scorewas used in LLS
and SEDD to map the IPs’ family history of longevity. The LRC score
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indicates the proportion of ancestors that became long-lived, weigh-
ted by the genetic distance between IPs (and partners in LLS) and their
ancestors. For example, an LRC of 0.5 indicates 50% long-lived
ancestors. For this study, two generations of ancestors were avail-
able to calculate the LRC score for IPs and one generation for the
partners of the LLS IPs (Fig. 1 and Supplementary Fig. 1). In the LLS, the
LRC scorewascalculatedusing themortality information asupdated in
2021. In the SEDD, IPs were identified in such a way that all ancestors
were deceased at the start of follow-up. The LRC score has been
described in detail by van den Berg et al., 2020 in Aging Cell22 and can
be calculated as follows:

LRCi =
weighted number of top10%ancestors
weighted total number of ancestors

=

PNi
k = 1wk � IðPk ≥0:9Þi

PNi
k = 1wk

Where i refers to the IPs for whom the score is built. k is an index
referring to each ancestral blood relative (from here: ancestors) of
person i who are used to construct the score. Ni refers to the
total number of ancestors of person i, Fig. 1), Pk is the sex and birth
year-specific survival percentile, based on lifetables, of ancestor k,
and I(Pk ≥0.9) indicates if ancestor k belongs to the top 10%
survivors.

PNi
k = 1 wk is the weighted total number of ancestors of IP

i. The relationship coefficients are used as weights wk. Supplemen-
tary Figure 6A-B depict the LRC score distribution in the LLS
and SEDD.

MetaboHealth score. In de LLS study, the MetaboHealth score was
used as an indicator for the (metabolomic) health of the offspring and
partners at study inclusion. This previously published score was gen-
erated based on NMR metabolomics data in ~40.000 European study
participants and is calculated as the weighted sum of 14 independent
metabolites covering 5–10 yearsmortality risk andmetabolitemarkers
of lipid metabolism, fatty acid metabolism, glycolysis, fluid balance,
and inflammation25,58. Supplementary Figure 6C depicts the Metabo-
Health score distribution in the LLS.

Statistical analyses
Statistical analyses were conducted using R version 4.0.259. We
reported 95% confidence intervals (CIs) and considered two-sided p-
values statistically significant at the 5% level (α =0.05). A list of used
R-packages and version numbers is available on gitlab (see code
availability statement). Linear, logistic, and Cox-type random effects
models were used to adjust for within-family relations, assuming
family-specific randomeffects anddefining families as F3 IPswho share
the same parents.

Logistic and linearmixedmodels. Analysis 1: To comparemedication
prevalence between (LRC-based) LLS IPs and partners we fitted a
logistic mixed-model:

logit π ij

� �
=βZij + γX ij +ui, ð1Þ

where Y ijis the binary responseðmedication yes=noÞforpersonjin
family i and πij = P Y ij = 1∣Zij ,X ij ,ui

� �
is the probability of medication

conditional on the family-specific random effect ui and individual-
specific covariate information (Zij ,X ij), β is the main regression
coefficient of interest, representing the fixed effect of the variable Z
which indicates a family history of longevity. We considered three
types of medication resulting in three different definitions of the
outcome Y: (1) ATC-A, (2) ATC-B, and (3) ATC-C type medication and
two different definitions of Z : (1) offspring/partners or (2) LRC-based
offspring/partners. γ is a vector of regression coefficients for the fixed
effects ofpossible confounders (X)which are: (1) age at study inclusion
and (2) sex in all models. The unobserved family-specific random
effects ui were assumed to follow a normal distribution.

Analysis 2: To compare the MetaboHealth score between the LRC
groups (LRC_g1-3 with LRC_g4) in the LLS we fitted a linear mixed-
model:

Y ij =βZij + γX ij +ui, ð2Þ

where Y ij is the MetaboHealth score for person j in family i. β is the
main regression coefficient of interest, representing the fixed effect of
the variable Z which is the LRC-based offspring/partners. γ is a vector
of regression coefficients for the fixed effects of possible confounders
(X)whichare: (1) age at study inclusion, (2) sex, and (3)medicationuse.
The unobserved family-specific random effects ui were assumed to
follow a normal distribution.

Survival analysis (Cox-type random effects regression model).
Analysis 3: To compare age at disease onset between (LRC-based)
offspring and partners in the LLS, we fitted a set of Cox-type random
effects modes:

λ tij
� �

=uiλ0 tij
� �

expðβZij + γX ijÞ ð3Þ

where tij is the right-censoredoutcomeof IP j in family i, λ0 tij
� �

refers to
the baseline hazard, which is left unspecified, and β is the main
regression coefficient of interest, representing the fixed effect of the
variable Z which indicates a family history of longevity. We have
considered two alternative definitions of the outcome variable t: (1) age
at first disease onset, (2) age at the second disease onset and three
different definitions of Z : (1) offspring/partners, (2) LRC-based off-
spring/partners, and (3) LRC score as a continuous variable. Themodels
are adjusted for left truncation given by the age at entry in the study and
adjusted by sex (confounder denoted by X in expression 3). ui >0 refers
to an unobserved random effect (frailty) shared by the members of the
same family i and was assumed to follow a gamma distribution.

Analysis 4: To compare time between first and second disease
between (LRC-based) offspring andpartners in theLLS,wefitted aCox-
type random effects model (see expression 3). Here tij is age at second
disease onset where age at the first disease onset is considered as the
left-truncation time in this analysis. λ0 tij

� �
refers to the baseline

hazard, which is left unspecified in a Cox-type model. β is a vector of
regression coefficients for themain effects of interest Zð Þwhich are: (1)
offspring/partners, (2) LRC-based offspring/partners, and (3) LRC
score. γ is a vector of regression coefficients for the effects of possible
confounders ðXÞwhichare: (1) sex and (2) age, as capturedby adjusting
for left truncation. ui >0 refers to an unobserved random effect
(frailty) shared by the members of the same family i and was assumed
to follow a gamma distribution.

Analysis 5: Disease incidence analyses in the LLS are repeated in
the SEDD data. The main goals of replication were: (1) reduction of
chance findings; two independent studies showing comparable results
imply lower chance of spurious associations, (2) generalizability to
unselected samples; the LLS may be exposed to (healthy) participant
bias and other inclusion criteria related selections while in the Swedish
data does not apply any inclusion criteria and comes from the national
registers which cover the entire country, (3) robustnesswith respect to
missing information; while the LLS presents limited ancestralmortality
data for partners, the Swedish data is based on (National) registers
where missing information is negligible. In the SEDD analysis, we
consider Cox-type random effect models following expression (3) and
considering different definitions for the outcome t: (1) age at first
disease onset, and (2) age at death. The models are adjusted for left
truncation given by the age at entry in the study. λ0ðtijÞ refers to the
baseline hazard, which is left unspecified and β is the regression
coefficient of interest representing the fixed effect of variable Z which
is the LRC score (considered as a continuous variable). As in the LLS-
based Analysis 3, the models are adjusted for left truncation given by
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the age at entry in the study and adjusted by sex (confounder denoted
by X in expression (3)). ui >0 refers to an unobserved random effect
(frailty) shared by the members of the same family i and was assumed
to follow a gamma distribution.

In all Cox-type random effects regression analyses we accounted
for the fact that follow-up did not start at the same age for most IPs
(left truncation) by using an IP specific age at start of follow-up.
Moreover, we accounted for the fact IPs may still be at risk of disease
onset after the endof follow-up (up to 26 years) by accounting for right
censoring. The linearity assumption of the LRC score (considered as a
continuous variable) was graphically assessed using Martingale resi-
duals before adding family-specific random effects. We did not find
evidence for a non-linear effect of the LRC score.

Ethical regulations
Leiden Longevity Study: In accordance with the Declaration of Hel-
sinki, weobtained informed consent fromall participants prior to their
study entry. Good clinical practice guidelines were maintained. The
study protocol was approved by the ethical committee of the Leiden
University Medical Center before the start of the study (P01.113).

SEDD: The SEDD has approval for research from Regionala etik-
prövningsnämnden, Lund, (dnr 161/2006, dnr 627/2010), and
instructions from Datainspektionen, Stockholm (dnr 1999-2005).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level data from the SEDD, the Statistics Sweden, and LLS
are protected by Swedish and Dutch personal integrity laws, and other
(privacy) regulations. As such, restrictions apply to the availability of
the LLS and SEDD data, which were used under license for the current
study, and so are not publicly available. All summary statistics and
data, underlying the main figures, are available in the source data file.
For both datasets, additional summary statistics are available upon
request to Niels van den Berg (corresponding author; n.m.a.van_-
den_berg@lumc.nl). The LLS data is available for replication purposes
upon request to P. Eline Slagboom (p.slagboom@lumc.nl) and if
replication is conducted within the secure Leiden University Medical
Center network environment. Researchers cangain access to the SEDD
data as used in this study if relevant permissions have been obtained in
accordance with the restrictions stated by the Regional Ethical Review
Board, the Swedish Data Inspection Board, and Lund University
(ingrid.van_dijk@ekh.lu.se). Initial responses for both LLS and SEDD
will be within one week. Research requests for commercial use will not
be considered. Source data are provided with this paper.

Code availability
The scripts containing the code for data pre-processing, data analyses,
and simulations performed in response to the reviewers can be
freely downloaded at: https://git.lumc.nl/publications/longevity-
family-diseases.
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