153 research outputs found

    Sectoral r modes and periodic RV variations of Sun-like stars

    Get PDF
    Radial velocity (RV) measurements are used to search for planets orbiting late-type main-sequence stars and confirm the transiting planets. The most advanced spectrometers are approaching a precision of 10\sim 10 cm/s that implies the need to identify and correct for all possible sources of RV oscillations intrinsic to the star down to this level and possibly beyond. The recent discovery of global-scale equatorial Rossby waves in the Sun, also called r modes, prompted us to investigate their possible signature in stellar RV measurements. R modes are toroidal modes of oscillation whose restoring force is the Coriolis force and propagate in the retrograde direction in a frame that corotates with the star. The solar r modes with azimuthal orders 3m153 \leq m \lesssim 15 were identified unambiguously because of their dispersion relation and their long e-folding lifetimes of hundreds of days. Here we simulate the RV oscillations produced by sectoral r modes with 2m52 \leq m \leq 5 assuming a stellar rotation period of 25.54 days and a maximum amplitude of the surface velocity of each mode of 2 m/s. This amplitude is representative of the solar measurements, except for the m=2m=2 mode which has not yet been observed. Sectoral r modes with azimuthal orders m=2m=2 and 33 would produce RV oscillations with amplitudes of 76.4 and 19.6 cm/s and periods of 19.16 and 10.22 days, respectively, for a star with an inclination of the rotation axis i=60i=60^{\circ}. Therefore, they may produce rather sharp peaks in the Fourier spectrum of the radial velocity time series that could lead to spurious planetary detections. Sectoral r~modes may represent a source of confusion in the case of slowly rotating inactive stars that are preferential targets for RV planet search. The main limitation of the present investigation is the lack of observational constraint on the amplitude of the m=2m=2 mode on the Sun.Comment: 7 pages; 4 figures; 1 table; accepted to Astronomy & Astrophysic

    Biphasic alterations in coronary smooth muscle Ca2+ regulation in a repeat cross-sectional study of coronary artery disease severity in metabolic syndrome

    Get PDF
    BACKGROUND AND AIMS: Coronary artery disease (CAD) is progressive, classified by stages of severity. Alterations in Ca(2+) regulation within coronary smooth muscle (CSM) cells in metabolic syndrome (MetS) have been observed, but there is a lack of data in relatively early (mild) and late (severe) stages of CAD. The current study examined alterations in CSM Ca(2+) regulation at several time points during CAD progression. METHODS: MetS was induced by feeding an excess calorie atherogenic diet for 6, 9, or 12 months and compared to age-matched lean controls. CAD was measured with intravascular ultrasound (IVUS). Intracellular Ca(2+) was assessed with fura-2. RESULTS: IVUS revealed that the extent of atherosclerotic CAD correlated with the duration on atherogenic diet. Fura-2 imaging of intracellular Ca(2+) in CSM cells revealed heightened Ca(2+) signaling at 9 months on diet, compared to 6 and 12 months, and to age-matched lean controls. Isolated coronary artery rings from swine fed for 9 months followed the same pattern, developing greater tension to depolarization, compared to 6 and 12 months (6 months = 1.8 ± 0.6 g, 9 months = 5.0 ± 1.0 g, 12 months = 0.7 ± 0.1 g). CSM in severe atherosclerotic plaques showed dampened Ca(2+) regulation and decreased proliferation compared to CSM from the wall. CONCLUSIONS: These CSM Ca(2+) regulation data from several time points in CAD progression and severity help to resolve the controversy regarding up-vs. down-regulation of CSM Ca(2+) regulation in previous reports. These data are consistent with the hypothesis that alterations in sarcoplasmic reticulum Ca(2+) contribute to progression of atherosclerotic CAD in MetS

    Public crises, public futures

    Get PDF
    This article begins to map out a novel approach to analyzing contemporary contexts of public crisis, relationships between them and possibilities that these scenes hold out for politics. The article illustrates and analyses a small selection of examples of these kinds of contemporary scenes and calls for greater attention to be given to the conditions and consequences of different forms and practices of public and political mediation. In offering a three-fold typology to delineate differences between ‘abject’, ‘audience’ and ‘agentic’ publics the article begins to draw out how political and public futures may be seen as being bound up with how the potentialities, capacities and qualities that publics are imagined to have and resourced to perform. Public action and future publics are therefore analysed here in relation to different versions of contemporary crisis and the political concerns and publics these crises work to articulate, foreground and imaginatively and practically support

    Intracellular Ca2+ Dysregulation in Coronary Smooth Muscle Is Similar in Coronary Disease of Humans and Ossabaw Miniature Swine

    Get PDF
    Intracellular free Ca2+ ([Ca2+]i) dysregulation occurs in coronary smooth muscle (CSM) in atherosclerotic coronary artery disease (CAD) of metabolic syndrome (MetS) swine. Our goal was to determine how CAD severity, arterial structure, and MetS risk factors associate with [Ca2+]i dysregulation in human CAD compared to changes in Ossabaw miniature swine. CSM cells were dispersed from coronary arteries of explanted hearts from transplant recipients and from lean and MetS swine with CAD. CSM [Ca2+]i elicited by Ca2+ influx and sarcoplasmic reticulum (SR) Ca2+ release and sequestration was measured with fura-2. Increased [Ca2+]i signaling was associated with advanced age and a greater media area in human CAD. Decreased [Ca2+]i signaling was associated with a greater number of risk factors and a higher plaque burden in human and swine CAD. Similar [Ca2+]i dysregulation exhibited in human and Ossabaw swine CSM provides strong evidence for the translational relevance of this large animal model

    Sources of Uncertainty in Regional and Global Terrestrial CO2 Exchange Estimates

    Get PDF
    The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO2 growth rate, fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a “budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute to this term. To obtain deeper insight on the sources of uncertainty in global and regional carbon budgets, we analyzed differences in Net Biome Productivity (NBP) for all possible combinations of bottom-up and top-down data sets in GCB2018: (i) 16 dynamic global vegetation models (DGVMs), and (ii) 5 atmospheric inversions that match the atmospheric CO2 growth rate. We find that the global mismatch between the two ensembles matches well the GCB2018 budget imbalance, with Brazil, Southeast Asia, and Oceania as the largest contributors. Differences between DGVMs dominate global mismatches, while at regional scale differences between inversions contribute the most to uncertainty. At both global and regional scales, disagreement on NBP interannual variability between the two approaches explains a large fraction of differences. We attribute this mismatch to distinct responses to El Niño–Southern Oscillation variability between DGVMs and inversions and to uncertainties in land use change emissions, especially in South America and Southeast Asia. We identify key needs to reduce uncertainty in carbon budgets: reducing uncertainty in atmospheric inversions (e.g., through more observations in the tropics) and in land use change fluxes, including more land use processes and evaluating land use transitions (e.g., using high-resolution remote-sensing), and, finally, improving tropical hydroecological processes and fire representation within DGVMs.</p

    Interplay between Anomalous Transport and Catalytic Reaction Kinetics in Single-File Nanoporous Systems

    Get PDF
    Functionalized nanoporous materials have broad utility for catalysis applications. However, the kinetics of catalytic reaction processes in these systems can be strongly impacted by the anomalous transport. The most extreme case corresponds to single-file diffusion for narrow pores in which species cannot pass each other. For conversion reactions with a single-file constraint, traditional mean-field-type reaction-diffusion equations fail to capture the initial evolution of concentration profiles, and they cannot describe the scaling behavior of steady-state reactivity. Hydrodynamic reaction-diffusion equations accounting for the single-file aspects of chemical diffusion can describe such initial evolution, but additional refinements are needed to incorporate fluctuation effects controlling, for example, steady-state reactivity localized near pore openings. For polymerization reactions with a single-file constraint, initial behavior depends strongly on system details such as catalytic site loading and reaction rate. However, long-time behavior often involves the formation of a dominant large polymer near each end of the pore, initially within the pore but subsequently partly extruding. In this partial extrusion regime, the kinetics is governed by the special features of the random walk describing the motion of the end of the partly extruded polymer, noting that this extruded end must return within the pore for further growth

    Egypt's Neoliberal Reforms and the Moral Economy of Bread : Sadat, Mubarak, Morsi

    Get PDF
    The Egyptian Revolution 2011 has its roots in neoliberal policies, the premises of which are not shared by a large part of the Egyptian population. Starting from the call for “bread, freedom, social justice”, this paper sheds light on the moral economy of the Egyptian people and finds the seeds of the revolution in a loss of entitlements which structural adjustment policies entailed for Egyptians as producers and consumers of bread, the symbol of life.Peer reviewe
    corecore