14 research outputs found

    High-Throughput Immunoblotting Identifies Biotin-Dependent Signaling Proteins in HepG2 Hepatocarcinoma Cells\u3csup\u3e1\u3c/sup\u3e

    Get PDF
    Biotin affects the abundance of mRNA coding for ~10% of genes expressed in human-derived hepatocarcinoma (HepG2) cells. Here, we determined whether effects of biotin on gene expression are associated with changes in the abundance of distinct proteins in cell signaling and structure. HepG2 cells were cultured in media containing the following concentrations of biotin: 0.025 nmol/L (denoted “deficient”), 0.25 nmol/L (“physiological” = control), and 10 nmol/L (“pharmacological”) for 10 d before harvesting. The abundance of 1009 proteins from whole-cell extracts was quantified by using high-throughput immunoblots. The abundance of 44 proteins changed by at least 25% in biotin-deficient and biotin-supplemented cells compared with physiological controls. One third of these proteins participate in cell signaling. Specifically, proteins associated with receptor tyrosine kinase–mediated signaling were identified as targets of biotin; the abundance of these proteins was greater in biotin-deficient cells than in controls. This was associated with increased DNA-binding activities of the transcription factors Fos and Jun, and increased expression of a reporter gene driven by activator protein (AP)1-binding elements in biotin-deficient cells compared with physiological controls. The abundance of selected signaling proteins was not paralleled by the abundance of mRNA, suggesting that biotin affects expression of these genes at a post-transcriptional step. Additional clusters of biotin-responsive proteins were identified that play roles in cytoskeleton homeostasis, nuclear structure and transport, and neuroscience. This study is consistent with the existence of clusters of biotin-responsive proteins in distinct biological processes, including signaling by Fos/Jun; the latter might mediate the proinflammatory and antiapoptotic effects of biotin deficiency

    Nitric Oxide Signaling Depends on Biotin in Jurkat Human Lymphoma Cells12

    No full text
    Biotin affects gene expression through a diverse array of cell signaling pathways. Previous studies provided evidence that cGMP-dependent signaling also depends on biotin, but the mechanistic sequence of cGMP regulation by biotin is unknown. Here we tested the hypothesis that the effects of biotin in cGMP-dependent cell signaling are mediated by nitric oxide (NO). Human lymphoid (Jurkat) cells were cultured in media containing deficient (0.025 nmol/L), physiological (0.25 nmol/L), and pharmacological (10 nmol/L) concentrations of biotin for 5 wk. Both levels of intracellular biotin and NO exhibited a dose-dependent relationship in regard to biotin concentrations in culture media. Effects of biotin on NO levels were disrupted by the NO synthase (NOS) inhibitor N-monomethyl-arginine. Biotin-dependent production of NO was linked with biotin-dependent expression of endothelial and neuronal NOS, but not inducible NOS. Previous studies revealed that NO is an activator of guanylate cyclase. Consistent with these previous observations, biotin-dependent generation of NO increased the abundance of cGMP in Jurkat cells. Finally, the biotin-dependent generation of cGMP increased protein kinase G activity. Collectively, the results of this study are consistent with the hypothesis that biotin-dependent cGMP signaling in human lymphoid cells is mediated by NO

    Biotin Regulates the Expression of Holocarboxylase Synthetase in the miR-539 Pathway in HEK-293 Cells123

    No full text
    Holocarboxylase synthetase (HCS) catalyzes the covalent binding of biotin to carboxylases and histones. In mammals, the expression of HCS depends on biotin, but the mechanism of regulation is unknown. Here we tested the hypothesis that microRNA (miR) plays a role in the regulation of the HCS gene. Human embryonic kidney cells were used as the primary model, but cell lines from other tissues and primary human cells were also tested. In silico searches revealed an evolutionary conserved binding site for miR-539 in the 3 prime -untranslated region (3 prime -UTR) of HCS mRNA. Transgenic cells and reporter gene constructs were used to demonstrate that miR-539 decreases the expression of HCS at the level of transcription rather than translation; these findings were corroborated in nontransgenic cells. When miR-539 was overexpressed in transgenic cells, the abundance of both HCS and biotinylated histones decreased. The abundance of miR-539 was tissue dependent: fibroblasts gt kidney cells gt intestinal cells gt lymphoid cells. Dose-response studies revealed that the abundance of miR-539 was significantly higher at physiological concentrations of biotin than both biotin-deficient and biotin-supplemented media in all cell lines tested. In kidney cells, the expression of HCS was lower in cells in physiological medium than in deficient and supplemented medium. In contrast, in fibroblasts, lymphoid cells, and intestinal cells, there was no apparent link between miR-539 abundance and HCS expression, suggesting that factors other than miR-539 also contribute to the regulation of HCS expression in some tissues. Collectively, the results of this study suggest that miR-539 is among the factors sensing biotin and regulating HCS
    corecore