1,203 research outputs found

    Apocynin Dietary Supplementation Delays Mouse Ovarian Ageing

    Get PDF
    Advanced maternal age is associated with higher infertility rates, pregnancy-associated complications, and progeny health issues. The ovary is considered the main responsible for these consequences due to a continuous decay in follicle number and oocyte quality. Intracellular imbalance between oxidant molecules and antioxidant mechanisms, in favour of the former, results in oxidative stress (OS) that is believed to contribute to ovarian ageing. This work is aimed at evaluating whether an age-related increase in ovarian OS, inflammation, and fibrosis may contribute to tissue dysfunction and whether specific antioxidant supplementation with a NADPH oxidase inhibitor (apocynin) could ameliorate them. Mice aged 8-12 weeks (reproductively young) or 38-42 weeks (reproductively aged) were employed. Aged mice were divided into two groups, with one receiving apocynin (5 mM) in the drinking water, for 7 weeks, upon which animals were sacrificed and their ovaries collected. Ovarian structure was similar at both ages, but the ovaries from reproductively aged mice exhibited lipofuscin deposition, enhanced fibrosis, and a significant age-related reduction in primordial and primary follicle number when compared to younger animals. Protein carbonylation and nitration, and markers of OS were significantly increased with age. Moreover, mRNA levels of inflammation markers, collagens, metalloproteinases (MMPs), and tissue inhibitor MMPs (TIMPs) were upregulated. Expression of the antifibrotic miRNA29c-3p was significantly reduced. Apocynin supplementation ameliorated most of the age-related observed changes, sometimes to values similar to those observed in young females. These findings indicate that there is an age-related increase in OS that plays an important role in enhancing inflammation and collagen deposition, contributing to a decline in female fertility. Apocynin supplementation suggests that the imbalance can be ameliorated and thus delay ovarian ageing harmful effects.info:eu-repo/semantics/publishedVersio

    Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations

    Get PDF
    BACKGROUND: The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. METHODS: Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. RESULTS: Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. CONCLUSIONS: Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF

    Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.

    Get PDF
    INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study

    Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families

    Get PDF
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    Does Habitual Physical Activity Increase the Sensitivity of the Appetite Control System? A Systematic Review.

    Get PDF
    BACKGROUND: It has been proposed that habitual physical activity improves appetite control; however, the evidence has never been systematically reviewed. OBJECTIVE: To examine whether appetite control (e.g. subjective appetite, appetite-related peptides, food intake) differs according to levels of physical activity. DATA SOURCES: Medline, Embase and SPORTDiscus were searched for articles published between 1996 and 2015, using keywords pertaining to physical activity, appetite, food intake and appetite-related peptides. STUDY SELECTION: Articles were included if they involved healthy non-smoking adults (aged 18-64 years) participating in cross-sectional studies examining appetite control in active and inactive individuals; or before and after exercise training in previously inactive individuals. STUDY APPRAISAL AND SYNTHESIS: Of 77 full-text articles assessed, 28 studies (14 cross-sectional; 14 exercise training) met the inclusion criteria. RESULTS: Appetite sensations and absolute energy intake did not differ consistently across studies. Active individuals had a greater ability to compensate for high-energy preloads through reductions in energy intake, in comparison with inactive controls. When physical activity level was graded across cross-sectional studies (low, medium, high, very high), a significant curvilinear effect on energy intake (z-scores) was observed. LIMITATIONS: Methodological issues existed concerning the small number of studies, lack of objective quantification of food intake, and various definitions used to define active and inactive individuals. CONCLUSION: Habitually active individuals showed improved compensation for the energy density of foods, but no consistent differences in appetite or absolute energy intake, in comparison with inactive individuals. This review supports a J-shaped relationship between physical activity level and energy intake. Further studies are required to confirm these findings. PROSPERO REGISTRATION NUMBER: CRD42015019696

    Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont

    Get PDF
    The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment
    corecore